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Abstract

Privacy-preserving machine learning algorithms are aluioir the increasingly common setting
in which personal data, such as medical or financial recadsanalyzed. We provide general
techniques to produce privacy-preserving approximatmslassifiers learned via (regularized)
empirical risk minimization (ERM). These algorithms arévate under the-differential privacy
definition due to Dwork et al. (2006). First we apply the outparturbation ideas of Dwork et
al. (2006), to ERM classification. Then we propose a new ntethbjective perturbationfor
privacy-preserving machine learning algorithm desigrisfinethod entails perturbing the objective
function before optimizing over classifiers. If the loss aegularizer satisfy certain convexity and
differentiability criteria, we prove theoretical resusisowing that our algorithms preserve privacy,
and provide generalization bounds for linear and nonlitkeanels. We further present a privacy-
preserving technique for tuning the parameters in genesahine learning algorithms, thereby
providing end-to-end privacy guarantees for the trainiragpss. We apply these results to produce
privacy-preserving analogues of regularized logistiad@sgion and support vector machines. We
obtain encouraging results from evaluating their perfarogaon real demographic and benchmark
data sets. Our results show that both theoretically andrézafly, objective perturbation is superior
to the previous state-of-the-art, output perturbationmi@naging the inherent tradeoff between
privacy and learning performance.

Keywords: privacy, classification, optimization, empirical risk ririmization, support vector ma-
chines, logistic regression

1. Introduction

Privacy has become a growing concern, due to the massive increasesamal information stored
in electronic databases, such as medical records, financial rea@bsearch histories, and social
network data. Machine learning can be employed to discover novel pgapulaide patterns, how-
ever the results of such algorithms may reveal certain individuals’ semgitiermation, thereby
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violating their privacy. Thus, an emerging challenge for machine learningvisto learn from data
sets that contain sensitive personal information.

At the first glance, it may appear that simple anonymization of private infiomé& enough to
preserve privacy. However, this is often not the case; even if obvdmntifiers, such as names and
addresses, are removed from the data, the remaining fields can still fogoeu'signatures” that
can help re-identify individuals. Such attacks have been demonstrateakioys works, and are
possible in many realistic settings, such as when an adversary has sidesitiém (Sweeney, 1997;
Narayanan and Shmatikov, 2008; Ganta et al., 2008), and when theadasiriaictural properties
(Backstrom et al., 2007), among others. Moreover, even releasitigfissaon a sensitive data set
may not be sufficient to preserve privacy, as illustrated on genetic Hatadr et al., 2008; Wang
etal., 2009). Thus, there is a great need for designing machine leatgorithms that also preserve
the privacy of individuals in the data sets on which they train and operate.

In this paper we focus on the problem of classification, one of the fundi@ingroblems of
machine learning, when the training data consists of sensitive informatiodiefdoals. Our work
addresses the empirical risk minimization (ERM) framework for classificaitionhich a classifier
is chosen by minimizing the average over the training data of the predictionds réspect
to the label) of the classifier in predicting each training data point. In this weefocus on
regularized ERM in which there is an additional term in the optimization, calledetyelarizer,
which penalizes the complexity of the classifier with respect to some metric. |&Rizgad ERM
methods are widely used in practice, for example in logistic regression apdiswector machines
(SVMs), and many also have theoretical justification in the form of genetadizerror bounds with
respect to independently, identically distributed (i.i.d.) data (see Vapnilg f@9urther details).

For our privacy measure, we use a definition due to Dwork et al. (2006t have proposed a
measure of quantifying the privacy-risk associated with computing furctibsensitive data. Their
e-differential privacymodel is a strong, cryptographically-motivated definition of privacy tlest h
recently received a significant amount of research attention for itstobss to known attacks, such
as those involving side information (Ganta et al., 2008). Algorithms satiséydlifferential privacy
are randomized; the output is a random variable whose distribution is coretition the data set.
A statistical procedure satisfiesdifferential privacy if changing a single data point does not shift
the output distribution by too much. Therefore, from looking at the outpahefalgorithm, it is
difficult to infer the value of any particular data point.

In this paper, we develop methods for approximating ERM while guaranteediiferential
privacy. Our results hold for loss functions and regularizers satigfgertain differentiability and
convexity conditions. An important aspect of our work is that we develofhaaks forend-to-end
privacy, each step in the learning process can cause additional risk of pmalegion, and we
provide algorithms with quantifiable privacy guarantees for training as ageplarameter tuning.
For training, we provide two privacy-preserving approximations to ERNe first isoutput per-
turbation, based on theensitivity methogroposed by Dwork et al. (2006b). In this method noise
is added to the output of the standard ERM algorithm. The second method is aiosténvolves
adding noise to the regularized ERM objective function prior to minimizing. Wietlia second
methodobjective perturbation We show theoretical bounds for both procedures; the theoretical
performance of objective perturbation is superior to that of output pEtion for most problems.
However, for our results to hold we require that the regularizer begly@onvex (rulingL; regular-
izers) and additional constraints on the loss function and its derivativesactice, these additional
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constraints do not affect the performance of the resulting classifievaligate our theoretical re-
sults on data sets from the UCI repository.

In practice, parameters in learning algorithms are chosen via a holdowaiata the context of
privacy, we must guarantee the privacy of the holdout data as wellxfeieresults from the theory
of differential privacy to develop a privacy-preserving parameteinalgorithm, and demonstrate
its use in practice. Together with our training algorithms, this parameter tuniagtalg guarantees
privacy to all data used in the learning process.

Guaranteeing privacy incurs a cost in performance; because thettalge must cause some
uncertainty in the output, they increase the loss of the output predictoauBec¢hes-differential
privacy model requires robustness against all data sets, we makeuro@sns on the underlying
data for the purposes of making privacy guarantees. However, v pine impact of privacy con-
straints on the generalization error, we assume the data is i.i.d. accordingcéal dodit unknown
distribution, as is standard in the machine learning literature. Although many oésults hold for
ERM in general, we provide specific results for classification using logistjicesssion and support
vector machines. Some of the former results were reported in ChaudfiLillanteleoni (2008);
here we generalize them to ERM and extend the results to kernel methdgspaitde experiments
on real data sets.

More specifically, the contributions of this paper are as follows:

e We derive a computationally efficient algorithm for ERM classification, base the sen-
sitivity method due to Dwork et al. (2006b). We analyze the accuracy ofatlisrithm,
and provide an upper bound on the number of training samples requitthiskatgorithm to
achieve a fixed generalization error.

e We provide a general techniguahjective perturbationfor providing computationally effi-
cient, differentially private approximations to regularized ERM algorithmss €hktends the
work of Chaudhuri and Monteleoni (2008), which follows as a spemaak, and corrects an
error in the arguments made there. We apply the general results on tli@/gemsethod
and objective perturbation to logistic regression and support vectoringaclassifiers. In
addition to privacy guarantees, we also provide generalization bountsgga@lgorithm.

e For kernel methods with nonlinear kernel functions, the optimal classifeetirear combi-
nation of kernel functions centered at the training points. This form i@y non-private
because it reveals the training data. We adapt a random projection metbdd &ahimi
and Recht (2007, 2008b), to develop privacy-preserving kdeRdt algorithms. We provide
theoretical results on generalization performance.

e Because the holdout data is used in the process of training and releaslagsHier, we
provide a privacy-preserving parameter tuning algorithm based ondomgized selection
procedure (McSherry and Talwar, 2007) applicable to general imaddarning algorithms.
This guarantees end-to-end privacy during the learning procedure.

e We validate our results using experiments on two data sets from the UCI Msalcearning
repositories (Asuncion and Newman, 2007) and KDDCup (Hettich and B2§9). Our
results show that objective perturbation is generally superior to outpuutrpation. We also
demonstrate the impact of end-to-end privacy on generalization error.
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1.1 Related Work

There has been a significant amount of literature on the ineffectiveriessiple anonymization
procedures. For example, Narayanan and Shmatikov (2008) shoe shadll amount of auxiliary
information (knowledge of a few movie-ratings, and approximate datesfisisat for an adver-
sary to re-identify an individual in the Netflix data set, which consists ohgmized data about
Netflix users and their movie ratings. The same phenomenon has beewesbiseother kinds of
data, such as social network graphs (Backstrom et al., 2007) hsgaecy logs (Jones et al., 2007)
and others. Releasing statistics computed on sensitive data can also leenatahy for example,
Wang et al. (2009) show that releasiRévalues computed on high-dimensional genetic data can
lead to privacy breaches by an adversary who is armed with a small anfauntiéary information.

There has also been a significant amount of work on privacy-pfiegedata mining (Agrawal
and Srikant, 2000; Evfimievski et al., 2003; Sweeney, 2002; Maclagihala et al., 2006), spanning
several communities, that uses privacy models other than differentiakcgriMany of the models
used have been shown to be susceptibleotmposition attacksattacks in which the adversary has
some reasonable amount of prior knowledge (Ganta et al., 2008). Othkr(Mangasarian et al.,
2008) considers the problem of privacy-preserving SVM classificatiben separate agents have
to share private data, and provides a solution that uses random kéwrtedses provide any formal
privacy guarantee.

An alternative line of privacy work is in the secure multiparty computation settirggtd Yao
(1982), where the sensitive data is split across multiple hostile databaddbheagoal is to compute
a function on the union of these databases. Zhan and Matwin (2007 )samet al. (2006) consider
computing privacy-preserving SVMs in this setting, and their goal is to desdistributed protocol
to learn a classifier. This is in contrast with our work, which deals with a sedtirage the algorithm
has access to the entire data set.

Differential privacy, the formal privacy definition used in our papedis proposed by the semi-
nal work of Dwork et al. (2006b), and has been used since in nuragrorks on privacy (Chaudhuri
and Mishra, 2006; McSherry and Talwar, 2007; Nissim et al., 20@raBet al., 2007; Chaudhuri
and Monteleoni, 2008; Machanavajjhala et al., 2008). Unlike many otlhexgyrdefinitions, such
as those mentioned above, differential privacy has been shown teibtare to composition attacks
(attacks involving side-information) (Ganta et al., 2008). Some follow-ugkwa differential pri-
vacy includes work on differentially-private combinatorial optimization, thu&upta et al. (2010),
and differentially-private contingency tables, due to Barak et al. (R@0d Kasivishwanathan et al.
(2010). Wasserman and Zhou (2010) provide a more statistical view fefetitial privacy, and
Zhou et al. (2009) provide a technique of generating synthetic data agmgression via random
linear or affine transformations.

Previous literature has also considered learning with differential priv@ae of the first such
works is Kasiviswanathan et al. (2008), which presents a generadbuglthcomputationally inef-
ficient, method for PAC-learning finite concept classes. Blum et al. (2p@$ents a method for
releasing a database in a differentially-private manner, so that certathdiasses of queries can
be answered accurately, provided the class of queries has a bod@ddichension. Their methods
can also be used to learn classifiers with a fixed VC-dimension (Kasivitham et al., 2008) but
the resulting algorithm is also computationally inefficient. Some sample complexity mumnds
in this setting have been provided by Beimel et al. (2010). In addition, Rwad Lei (2009)
explore a connection between differential privacy and robust stafistinch provide an algorithm
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for privacy-preserving regression using ideas from robust statisTiceir algorithm also requires a
running time which is exponential in the data dimension, which is computationallyciegiti

This work builds on our preliminary work in Chaudhuri and MonteleoniO&0 We first show
how to extend the sensitivity method, a formaftput perturbationdue to Dwork et al. (2006b),
to classification algorithms. In general, output perturbation methods alteutpatmf the func-
tion computed on the database, before releasing it; in particular the sensii@ibod makes an
algorithm differentially private by adding noise to its output. In the classifinagetting, the noise
protects the privacy of the training data, but increases the predictionathe classifier. Recently,
independent work by Rubinstein et al. (2009) has reported an exteokibe sensitivity method
to linear and kernel SVMs. Their utility analysis differs from ours, andstthe analogous gen-
eralization bounds are not comparable. Because Rubinstein et al. begtexs from algorithmic
stability, their utility bounds compare the private and non-private classifteng the same value for
the regularization parameter. In contrast, our approach takes intoradumw the value of the regu-
larization parameter might change due to privacy constraints. In contagiropose thebjective
perturbationmethod, in which noise is added to thbjective functiorbefore optimizing over the
space classifiers. Both the sensitivity method and objective perturbasoh i computationally
efficient algorithms for our specific case. In general, our theoreticahtds on sample require-
ment are incomparable with the bounds of Kasiviswanathan et al. (2@@8ube of the difference
between their setting and ours.

Our approach to privacy-preserving tuning uses the exponentialanesch of McSherry and
Talwar (2007) by training classifiers with different parameters on disgubsets of the data and
then randomizing the selection of which classifier to release. This beapedisial resemblance
to the sample-and-aggregate (Nissim et al., 2007) and V-fold crosstrahidbut only in the sense
that only a part of the data is used to train the classifier. One drawback @uthapproach requires
significantly more data in practice. Other approaches to selecting the iiegtitar parameter could
benefit from a more careful analysis of the regularization parametir Hesstie et al. (2004).

2. Model

We will use||x]|, ||X||,, @and||x]|| ,, to denote th&>-norm, e,-norm, and norm in a Hilbert spack,
respectively. For an integerwe will use[n| to denote the seftl,2,...,n}. Vectors will typically
be written in boldface and sets in calligraphic type. For a matyiwe will use the notatiofjA||, to
denote thd_, norm of A.

2.1 Empirical Risk Minimization

In this paper we develop privacy-preserving algorithmaégularized empirical risk minimizatign
a special case of which is learning a classifier from labeled examples.iVy#hrase our problem
in terms of classification and indicate when more general results hold. Qaritaigs take as input
training dataD = {(xi,yi) € X x 9 i =1,2,...,n} of n data-label pairs. In the case of binary
classification the data spage= RY and the label se¥’ = {—1,+1}. We will assume throughout
that.X is the unit ball so thaftx;||, < 1.

We would like to produce gredictorf : X — 9. We measure the quality of our predictor on
the training data via a nonnegatilass functior? : 9 x 9 — R.
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In regularized empirical risk minimization (ERM), we choose a preditthat minimizes the
regularized empirical loss:

J(f, D) = iie(f(xi),yi)w\l\l(f). (1)

This minimization is performed ovdrin an hypothesis clas#/. The regularizeN(-) prevents
over-fitting. For the first part of this paper we will restrict our attention tedinpredictors and with
some abuse of notation we will wrif¢x) = fTx.

2.2 Assumptions on Loss and Regularizer

The conditions under which we can prove results on privacy and gkzagion error depend on an-
alytic properties of the loss and regularizer. In particular, we will reqeergain forms of convexity
(see Rockafellar and Wets, 1998).

Definition 1 A function Hf) overf € RY is said to bestrictly convexif for all a € (0,1), f, andg,
H(af+(1-a)g) <aH(f)+ (1-a)H(g).

It is said to beA-strongly convef for all a € (0,1), f, andg,
1
H(af +(1-a)g) < aH(f) + (1-0)H(g) — SAa(l-a) If—gl3-

A strictly convex function has a unique minimum (Boyd and Vandenbergb@4)2 Strong
convexity plays a role in guaranteeing our privacy and generalizatgpriresnents. For our privacy
results to hold we will also require that the regularikr) and loss functiord(-, -) be differentiable
functions off. This excludes certain classes of regularizers, such &4 -therm regularizeN(f) =
|||, and classes of loss functions such as the hinge/lags(fTx,y) = (1—yfTx)*. In some cases
we can prove privacy guarantees for approximations to these naraliffable functions.

2.3 Privacy Model

We are interested in producing a classifier in a manner that preservesivheyof individual
entries of the data s that is used in training the classifier. The notion of privacy we use is the
e-differential privacy modeldeveloped by Dwork et al. (2006b) (see also Dwork (2006)), which
defines a notion of privacy for a randomized algorith{D). Supposed (D) produces a classifier,
and let?D’ be another data set that differs frafmin one entry (which we assume is the private
value of one person). That id) and D haven — 1 points(x;,y;) in common. The algorithrd
provides differential privacy if for any set, the likelihood that4(?D) € § is close to the likelihood
A(7') € S, (where the likelihood is over the randomness in the algorithm). That is, iagles
entry of the data set does not affect the output distribution of the algotihmuch; dually, this
means that an adversary, who knows all but one entry of the data segta@ain much additional
information about the last entry by observing the output of the algorithm.

The following definition of differential privacy is due to Dwork et al. (BX), paraphrased from
Wasserman and Zhou (2010).
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Figure 1: An algorithm which is differentially private. When data sets whighidentical except
for a single entry are input to the algorithm the two distributions on the algorithm’s
output are close. For a fixed measuraple ratio of the measures (or densities) should
be bounded.

Definition 2 An algorithmA(‘B) taking values in a seT” providese,-differential privacy if

u(s | B = D)
supsup—————~ < efr, 2
PSP S| B=D) = @)

where the first supremum is over all measuraple T, the second is over all data sef3and D’
differing in a single entry, and (1 B) is the conditional distribution (measure) @h induced by
the output4(‘B) given a data se8. The ratio is interpreted to be 1 whenever the numerator and
denominator are both O.

Note that if S is a set of measure 0 under the conditional measures inducé&ddnd 7', the
ratio is automatically 1. A more measure-theoretic definition is given in Zhou €2@09). An
illustration of the definition is given in Figure 1.

The following form of the definition is due to Dwork et al. (2006a).

Definition 3 An algorithm4 providese,-differential privacy if for any two data set8 and 2’ that
differ in a single entry and for any sgt

exp(—€p)P(A(D') € §) <P(A(D) € 5) < explep)P(A(D') €.5), (3)
whereA(D) (resp.A4(D')) is the output of7 on inputD (resp. D).

We observe that an algorithrd that satisfies Equation 2 also satisfies Equation 3, and as a
result, Definition 2 is stronger than Definition 3.

From this definition, it is clear that th@(2) that outputs the minimizer of the ERM objective
(1) does not provide,-differential privacy for any,. This is because an ERM solution is a linear
combination of some selected training samples “near” the decision bountidnarid?’ differ in
one of these samples, then the classifier will change completely, making theddetlitio in (3)

1075



CHAUDHURI, MONTELEONI AND SARWATE

infinite. Regularization helps by penalizing the norm of the change, but does not account how
the direction of the minimizer is sensitive to changes in the data.

Dwork et al. (2006b) also provide a standard recipe for computingugyipreserving approxi-
mations to functions by adding noise with a particular distribution to the outpuedtiiction. We
call this recipe thesensitivity methodLet g: (R™)" — R be a scalar function dofy, ..., z,, where
z € R™ corresponds to the private value of individiighen the sensitivity of is defined as follows.

Definition 4 The sensitivity of a function. gR™)" — R is maximum difference between the values
of the function when one input changes. More formally, the sensitiglyds g is defined as:

S(g) = mia.X m?nxz‘g(zla"‘7ziflvziazi+1)"'azn)_g(zl)'"aziflaz|{7zi+17"'azn)}'

7,...

To compute a functiorg on a data setD = {z,...,z,}, the sensitivity method outputs
d(z1,...,2zn) +n, wheren is a random variable drawn according to the Laplace distribution, with
mean 0 and standard deviati%%). It is shown in Dwork et al. (2006b) that such a procedure is
ep-differentially private.

3. Privacy-preserving ERM

Here we describe two approaches for creating privacy-presealgagithms from (1).

3.1 Output Perturbation: The Sensitivity Method

Algorithm 1 is derived from theensitivity methodf Dwork et al. (2006b), a general method for
generating a privacy-preserving approximation to any funcfion. In this section the norrjj - ||

is theLz-norm unless otherwise specified. For the funcgrD) = argminJ(f, D), Algorithm 1
outputs a vectoA(D) + b, whereb is random noise with density

v(b) = ée—ﬁubu 7 (4)

wherea is a normalizing constant. The paramefeis a function ofe,, and thel,-sensitivityof
A(-), which is defined as follows.

Definition 5 The Ly-sensitivity of a vector-valued function is defined as the maximum change in th
L, norm of the value of the function when one input changes. More formally,

S(A) =max max ||A(z,...,z,...) = Az,....Z,...)||.

I 2,..,2.2

The interested reader is referred to Dwork et al. (2006b) for fudb&ils. Adding noise to the
output of A(-) has the effect of masking the effect of any particular data point. Howeveome
applications the sensitivity of the minimizer argndi, ) may be quite high, which would require
the sensitivity method to add noise with high variance.
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Algorithm 1 ERM with output perturbation (sensitivity)
Inputs: Data®D = {z}, parametersp, A.
Output: Approximate minimizef .
Draw a vectoib according to (4) with3 =
Computef iy = argmind(f, D) +b.

nA\gp
- -

3.2 Objective Perturbation

A different approach, first proposed by Chaudhuri and Montel&008), is to add noise to the
objective function itself and then produce the minimizer of the perturbed tlged hat is, we can
minimize

Joriv (f, D) = J(f, D) + %be,

whereb has density given by (4), with = €,. Note that the privacy parameter here does not depend
on the sensitivity of the of the classification algorithm.

Algorithm 2 ERM with objective perturbation

Inputs: Data®D = {7}, parametersp, A, C.

Output: Approximate minimizef .

Letel, =gy —log(1+ 2 + ).
If €, >0, thenA =0, elseA = n(TM — A, andej, = gp/2.
Draw a vectomb according to (4) witl3 = &;,/2.

Computefpry = argmindpry (f, D) + 3A|[f| 2.

The algorithm requires a certain slack, (tg- ﬁ—f\ + nzc—,z\z), in the privacy parameter. This is due
to additional factors in bounding the ratio of the densities. The “If” statenmetite algorithm is
from having to consider two cases in the proof of Theorem 9, which stibat the algorithm is
differentially private.

3.3 Privacy Guarantees

In this section, we establish the conditions under which Algorithms 1 and 2derey-differential
privacy. First, we establish guarantees for Algorithm 1.

3.3.1 RIvacY GUARANTEES FOROUTPUT PERTURBATION

Theorem 6 If N(-) is differentiable, and-strongly convex, andis convex and differentiable, with
|¢/(z)| < 1for all z, then, Algorithm 1 provides,-differential privacy.

The proof of Theorem 6 follows from Corollary 8, and Dwork et al. @@B). The proof is
provided here for completeness.
Proof From Corollary 8, if the conditions oN(-) and/ hold, then the_,-sensivity of ERM with
regularization parametéy is at mostni,\. We observe that when we pi¢fb|| from the distribution

in Algorithm 1, for a specific vectdn, € RY, the density aby is proportional tee " /IPll, Let D
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and?’ be any two data sets that differ in the value of one individual. Then, fpf.an

9f|D) _ v(br) _ oy ool
g(f|D)  v(b2)

whereb; andb; are the corresponding noise vectors chosen in Step 1 of Algorithm Ig(&rfd)
(9(f|D’) respectively) is the density of the output of Algorithm 1fawhen the input isD (2
respectively). Iff; andf, are the solutions respectively to non-private regularized ERM when the
input isD and?’, then,b, —b; = f, — f;. From Corollary 8, and using a triangle inequality,

2
- < |lby — byl = ||fo —f4]| < =.
bl ~ llbal] < 11~ bal| = [[f2— 1] < =

Moreover, by symmetry, the density of the direction®pfaindb, are uniform. Therefore, by con-
struction, g . The theorem follows. |

The main ingredient of the proof of Theorem 6 is a result about the seétysiif regularized
ERM, which is provided below.

Lemma 7 Let G(f) and (f) be two vector-valued functions, which are continuous, and differen-
tiable at all points. Moreover, let @) and G(f) + g(f) be A-strongly convex. If; = argmin G(f)
andf, = argmin G(f) + g(f), then

1
If2 = f2]| < 5 max(|Dg(f)]]

Proof Using the definition of; andf,, and the fact tha® andg are continuous and differentiable
everywhere,

0G(f1) = OG(f2) + Og(f2) = 0. (5)
As G(f) is A-strongly convex, it follows from Lemma 14 of Shalev-Shwartz (2007} tha
(0G(f1) — OG(f2)) T (f1 — f2) > Al[fy —f2|%.
Combining this with (5) and the Cauchy-Schwartz inequality, we get that
If2 —fall- [1Dg(F2) | > (F1—F2)TOg(f2) = (OG(f1) — OG(F2))T (F1—F2) = A[[fy — F2 2.

The conclusion follows from dividing both sides hyf1 —f2||. [ |

Corollary 8 If N(-) is differentiable andl-strongly convex, andis convex and differentiable with
|¢/(2)| < 1for all z, then, the b-sensitivity of Jf, D) is at most4.

Proof Let D ={(X1,¥1),--., Xn,¥n)} @and?D’ = {(X1,¥1),---, (X}, ¥,) } be two data sets that differ
)

in the value of then-th individual. Moreover, we leG(f) = J(f, D), g(f) = J(f, D) — I(f, D),
f1 = argmin J(f, D), andf, = argmin J(f, 2'). Finally, we set(f) = T (£(ynfTX) — £(YnfTXn)).
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We observe that due to the convexity fand 1-strong convexity di(-), G(f) = J(f, D) is
N-strongly convex. MoreoveG(f) +g(f) = J(f, 2’) is alsoA-strongly convex. Finally, due to the
differentiability of N(-) and/, G(f) andg(f) are also differentiable at all points. We have:

0(1) = O 00X X — Yot O 0)%0)

Asyi € [-1,1], ['(2)| < Do)l < §(11%n—x4l1) < {([[xall +
[Ix4]) < % The proof now follows by an application of Lemma 7. [

3.3.2 RRIVACY GUARANTEES FOROBJECTIVE PERTURBATION

In this section, we show that Algorithm 2 gg-differentially private. This proof requires stronger
assumptions on the loss function than were required in Theorem 6. lincestses, some of these
assumptions can be weakened; for such an example, see Section 3.4.2.

Theorem 9 If N(-) is 1-strongly convex and doubly differentiable, af(d) is convex and doubly
differentiable, with¢'(z)| < 1and|¢"(z)| < c for all z, then Algorithm 2 is,,-differentially private.

Proof Consider arfpr, output by Algorithm 2. We observe that giveny fixed fpy and a fixed
data setD, there always exists b such that Algorithm 2 outputf,y on input?. Because/

is differentiable and convex, ard(-) is differentiable, we can take the gradient of the objective
function and set it t® atf,y,. Therefore,

n
i=

Note that (6) holds because for afyy¢(fTx) = ¢ (fTx)x.

We claim that a¥ is differentiable andl(f, D) + %||ﬂ|2 is strongly convex, given a data set
D = (X1,Y1),---,(Xn,¥n), there is a bijection betwednandfy,. The relation (6) shows that two
differentb values cannot result in the sarfpg,. Furthermore, since the objective is strictly convex,
for a fixedb and®, there is a uniquéyyiv; therefore the map frori to fyyy, is injective. The relation
(6) also shows that for arfyi, there exists & for which fyyy, is the minimizer, so the map frotm
to fpriv IS surjective.

To showe,-differential privacy, we need to compute the radi®priv|2)/9(fpriv|?’) of the den-
sities offyy under the two data sef8 and?. This ratio can be written as (Billingsley, 1995)

9(fprv|D) _ p(b|D)  |detI(fpriv — b|D))[*
I(foriv|?)  Wb'|2') |detI(fprv — b'[D)) |1

whereJ(fyriv — b|D), I(fpriv — b|D’) are the Jacobian matrices of the mappings fifigim to b,
andp(b|D) andu(b|?’) are the densities df given the outpufyy, when the data sets afe and
D' respectively.

First, we bound the ratio of the Jacobian determinantsbliédenote thg-th coordinate ob.
From (6) we have

priv-

) — —nAON( fprIV Zlff yif prlv J nAf( )
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Given a data seD, the(j,k)-th entry of the Jacobian matrif — b|D) is

ob()
af(k>

priv

= —NADN (i) 14 — zyze" yifhaxi)xx —na1(j = k),

where 1-) is the indicator function. We note that the Jacobian is defined fdp@llbecauseN(-)
and/ are globally doubly differentiable.
Let D and?’ be two data sets which differ in the value of thh item such that

D = {(X1>y1)a ey (Xn—byn—l)a (men)} and Q)/ = {(ley]-)v sy (anlvyn*1)7 (X%,yﬁ)} Moreover’
we define matriced andE as follows:

A= nAD?N(fpriv) +Zly25” Vif privXi)XiX] + NAlg,

yzfﬂ(ynfprlv )an + y/n ZEN y/n prlv X nX

Let A1(M) andA2(M) denote the largest and second largest eigenvalues of a rivatrixs E
has rank at most 2, from Lemma 10,

| detJ(fpriv — b|D))|  |defA+E)|
|detJ(foriv — b|D))| | detA)
= [1+ A (AE) + A (ATIE) + A (AT TE)AL(ATIE)).

For a 1-strongly convex functiod, the Hessiafl?N (o, ) has eigenvalues greater than 1 (Boyd and
Vandenberghe, 2004). Since we have assufigedoubly differentiable and convex, any eigenvalue

of Ais therefore at least\ 4 nA; therefore, forj = 1,2, |A; (A1E)| < n(/\+g|) Applying the triangle
inequality to the trace norm:

‘}‘l(E)‘ + ’)‘2 ‘ < ‘YZZ// ynfpnv )‘ : ”Xn” "H (y;1 26”(%1 pr|v )’ ’ HX/nH :

Then upper bounds di|, ||xi||, and|¢”(z)| yield

A1(E)[+ [A2(E)| < 2c.

Therefore A 1(E)| - |A2(E)| < ¢?, and

|detA+E)| 2c c c 2
(- ira)

< — -
de(Ad)] =T niara) T A Lo2 A+

We now consider two cases. In the first case; 0, and by definition, in that case+12° n§/2\2 <
&% Inthe second casé,> 0, and in this case, by definition Af (1+ ) eﬁp/2 efr e
Next, we bound the ratio of the densitiesknf We observe that a¢’(z)| < 1, for anyz and

lvil, |Ixi|| < 1, for data set® and?’ which differ by one value,

b'—b= ynfl(ynfgriv yngl yﬂfprlv ) n-
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This implies that:
bl = [|b]| < lo-b[ <2

We can write:

d-1g-eplbl/2. 1
ublo) O™ ™7 e _ ooz < o

_ P
Ty dlg el 1 __ = ’
H'[D) || |d-te % Sur(| [T}

where surfx) denotes the surface area of the spherd dimensions with radiug. Here the last
step follows from the fact that sus) = surf(1)x3—, where surfl) is the surface area of the unit
sphere inR¢.
Finally, we are ready to bound the ratio of densities:
9(fprv|P) _ u(b[D) |detJI(fpriv — b|D))]
9(for| D) p(b/| D) |detI(fpry — b/|D))]
_ H(b|D) [defA+E)|
Hb'|D)  [detA|
< v S
< ébr.

Thus, Algorithm 2 satisfies Definition 2. [ |

Lemma 10 If A is full rank, and if E has rank at mo&t then,

defA+E) —det(A)
det(A)

=M(ATE) £ M(ATIE) + A (ATEE)A(ATIE),

whereA(Z) is the j-th eigenvalue of matrix Z.
Proof Note thatE has rank at most 2, s&~1E also has rank at most 2. Using the fact that
A(I+A1E) =1+ N (A1E),

detA+E)—detA) _
oA =detl +AE) -1
= (A+MAENA+AMATE) -1

=M(ATIE) + A(AE) + M (ATE)A(ATLE).

3.4 Application to Classification

In this section, we show how to use our results to provide privacy-pregeversions of logistic
regression and support vector machines.
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3.4.1 LOGISTICREGRESSION

One popular ERM classification algorithm is regularized logistic regressiothis caseN(f) =
%|\f||2, and the loss function i§ r(z) = log(1+ e #). Taking derivatives and double derivatives,

-1
/
)= —r,
1
1+e?)(1+e)’
Note that/ R is continuous, differentiable and doubly differentiable, with %1- Therefore, we can
plug in logistic loss directly to Theorems 6 and 9 to get the following result.

:_/R(Z) = (

Corollary 11 The output of Algorithm 1 with ) = 3||f||?, ¢ = 4 r is angp-differentially private
approximation to logistic regression. The output of Algorithm 2 witti)N= %|\f||2, c= %, and
¢ = (R, is angp-differentially private approximation to logistic regression.

We quantify how well the outputs of Algorithms 1 and 2 approximate (noragjviogistic
regression in Section 4.

3.4.2 SUPPORTVECTORMACHINES

Another very commonly used classifier lis-regularized support vector machines. In this case,
again,N(f) = 1|f||?, and

fsum (Z) = max(O, 1- Z).
Notice that this loss function is continuous, but not differentiable, andithdges not satisfy con-
ditions in Theorems 6 and 9.

There are two alternative solutions to this. First, we can approxifgtg by a different loss
function, which is doubly differentiable, as follows (see also Chapell@720

0 if z>14h
lo(z)=¢ G20 3022 1z, 30 |1 _z<h
1-z if z<1-—h.

As h — 0, this loss approaches the hinge loss. Taking derivatives, we @bty

0 if z>1+h
_ 3 _ .
l(z)=q &I 302 1 jf |1-7<h
-1 if z<1—h.
Moreover,
0 if z>1+h
2 .
0l(2) = _%;?_+% if [1—z<h
0 if z<1—h.

Observe that this implies thét!(z)| < 3. for all h andz. Moreover (s is convex, agy(z) > 0 for all
z Therefore{s can be used in Theorems 6 and 9, which gives us privacy-pres@pprgximations
to regularized support vector machines.
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Corollary 12 The output of Algorithm 1 with ) = %Hf\ 2, and? = {sis ane,-differentially private
approximation to support vector machines. The output of Algorithm 2 with 3|f||2, c= =,
and/ = /s is angp-differentially private approximation to support vector machines.

The second solution is to use Huber Loss, as suggested by Chapelf@, (@th is defined as
follows:

0 if z>1+h
CHubed2) = T1i1(1+h_ 22 if |1-7<h (7)
1-z if z<1—h

Observe that Huber loss is convex and differentiable, and piecewidgyddifferentiable, with
c= 2—1h However, it is not globally doubly differentiable, and hence the Jacoipidhe proof of
Theorem 9 is undefined for certain values.oHowever, we can show that in this case, Algorithm
2, when run withc = 2—1h satisfies Definition 3.

Let G denote the map frorfyy to b in (6) underB = D, andH denote the map und& = 2.

By definition, the probability?(fpriy € S | B = D) = Pp(b € G(S5)).

Corollary 13 Letfpy be the output of Algorithm 2 with= fhuper €= 4, and N(f) = 3||f|[2. For
any sets$ of possible values dfiv, and any pair of data set®, 2’ which differ in the private value
of one persorixn, yn),

e PSS | B=D)<P(S|B=D)<e"P(S | B=1D).

Proof Consider the everfty € S. Let T = G(S) and 7’ = H(S). Becauses is a bijection, we
have

and a similar expression wheh= 2.
Now note that/}, ,.(2) is only non-differentiable for a finite number of valueszfLet Z be
the set of these values nf

C={f:yf'x=z€ Z, (x,y) e DUD'}.

Pick a tuple(z (x,y)) € Z x (DU D). The set off such thatyfTx = z is a hyperplane iRY.
SinceON(f) =f/2 and/’ is piecewise linear, fron6) we see that the set of correspondhig is
also piecewise linear, and hence has Lebesgue measure 0. Since theenceazsponding tb
is absolutely continuous with respect to the Lebesgue measure, this laygehas probability O
underb as well. SinceC is a finite union of such hyperplanes, we h&fe € G(C)) = 0.

Thus we hav@y, (T | B= D) =Pp(G(S\ C) | B= D), and similarly forD’. From the definition
of GandH, forf € §\ C,

H(f) = G(f) +Yn£,(ynfTXn)Xn - )/nfl(y;lf-rx%)x%'

sincef ¢ C, this mapping shows that #,(G(S\ C) | B = D) = 0 then we must havB,(H (S \
C) | B= D) =0. Thus the result holds for sets of measure @& \fC has positive measure we can
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calculate the ratio of the probabilities fbyy for which the loss is twice-differentiable. For such
foriv the Jacobian is also defined, and we can use a method similar to Theoreno@ttherresultil

Remark: Because the privacy proof for Algorithm 1 does not require the angiytiperties of
2, we can also use Huber loss in Algorithm 1 to getguifferentially private approximation to the
SVM. We quantify how well the outputs of Algorithms 1 and 2 approximate peigaipport vector
machines in Section 4. These approximations to the hinge loss are nedessauge of the analytic
requirements of Theorems 6 and 9 on the loss function. Because thesraquis of Theorem 9 are
stricter, it may be possible to use an approximate loss in Algorithm 1 that wotilderexdmissible
in Algorithm 2.

4. Generalization Performance

In this section, we provide guarantees on the performance of prjmaserving ERM algorithms
in Section 3. We provide these bounds erregularization. To quantify this performance, we will
assume that thi entries in the data s&® are drawn i.i.d. according to a fixed distributi®(x, y).
We measure the performance of these algorithms by the number of sammelgsired to acheive
errorL* + &g, whereL" is the loss of a reference ERM predicfgr This resulting bound ogy will
depend on the normifo|| of this predictor. By choosing an upper bouman the norm, we can
interpret the result as saying that the privacy-preserving classifiemave erroreg more than that
of any predictor with|fp|| < v.

Given a distributiorP the expected lods(f) for a classifieff is

L(f) = Exyop [£(FTX,Y)] -

The sample complexity for generalization erggragainst a classifiefy is number of samples
required to achieve errdr(fp) + €4 under any data distributioR. We would like the sample com-
plexity to be low.

For a fixedP we define the following function, which will be useful in our analysis:

— A\
IO =LO+35 If[1%.
The functionJ_(f) is the expectation (ovd?) of the non-private.,-regularized ERM objective eval-
uated af.
For non-private ERM, Shalev-Shwartz and Srebro (2008) showftined givenfy with loss
L(fo) = L*, if the number of data points satisfies

Ifol[*log(3)
R

for some constar@, then the excess loss of the-regularized SVM solutiofisymsatisfied (fsym) <
L(fo) + &g. This order growth will hold for our results as well. It also serves afereace against
which we can compare the additional burden on the sample complexity imposte ipyivacy
constraints.

For most learning problems, we require the generalization egrarl. Moreover, it is also typ-
ically the case that for more difficult learning probler&|| is higher. For example, for regularized
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SVM, Hf%l\ is the margin of classification, and as a resjiiig)| is higher for learning problems with
smaller margin. From the bounds provided in this section, we note that the domgiterm in the
sample requirement for objective perturbation has a better dependemiég|jcas well as%; asa
result, for more difficult learning problems, we expect objective pedtimh to perform better than

output perturbation.

4.1 Output Perturbation

First, we provide performance guarantees for Algorithm 1, by providibgund on the number of
samples required for Algorithm 1 to produce a classifier with low error.

Definition 14 A function dz) : R — R is c-Lipschitz if for all pairyz;, z;) we haveg(z) —9(z)| <
Clzs— 2.

Recall that if a functiorg(z) is differentiable, with|g'(z)| < r for all z, theng(z) is alsor-
Lipschitz.

Theorem 15 Let N(f) = 3||f||2, and letfo be a classifier such that(fp) = L*, and letd > 0. If £ is

differentiable and continuous witld'(z)| < 1, the derivative!’ is c-Lipschitz, the dat& is drawn

i.i.d. according to P, then there exists a constant C such that if the numkesioning samples
satisfies

(8)

follPlog(1) dlog(9)Ifoll dlog(2)ct/2||foll?
n>Cmax<lo\l og(3) dlog(§)lffoll diog(3)™Ifol*)

&g & e5/%,
where d is the dimension of the data space, then the otgpuof Algorithm 1 satisfies

Proof Let

frr = argmind(f),
f

f* = argmind(f, D),
f

andfyyy denote the output of Algorithm 1. Using the analysis method of Shalev-&had Srebro
(2008) shows

o) = L(To) + (Iprv) — 30fe)) + (3Ther) — 30f0)) + 1o~ Sl (@)

We will bound the terms on the right-hand side of (9).
For a regularizeN(f) = 3||f||? the Hessian satisfiefI?N(f)||. < 1 . Therefore, from Lemma
16, with probability 1— & over the privacy mechanism,

8d2log?(d/d)(c+A)

/\ane%
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Furthermore, the results of Sridharan et al. (2008) show that with pildlgal — & over the choice
of the data distribution,

= = log(1/4
The constant in the last term depends on the derivative of the loss ahduhd on the data points,
which by assumption are bounded. Combining the preceeding two stateméhtgrebability
1— 25 over the noise in the privacy mechanism and the data distribution, the seconthtthe
right-hand-side of (9) is at most:

_ — 16d%log?(d/& A log(1/d
J(fpriv) —J(frr) < Og\gnz/e%))(c—’— ! +O< Og/(\n/ )) '

(10)

By definition offy, the differencdJ(fy) — J(fp)) < 0. Setting/\ = Hfﬁ in (9) and using (10), we
obtain

16||fo||*d?log?(d /) (c+ €4/ ||fol [2 log(1/d €
|[fol| g (2/2 g( o/ |Ifoll )+O<Hfo\|2 g(1/ )>+g‘
N°€ges NEg 2

Solving forn to make the total excess error equatfoyields (8). |

L(fpriv) <L(fo)+

Lemma 16 Suppose N) is doubly differentiable with 0°N(f)||> < n for all f, and suppose that
is differentiable and has continuous and c-Lipschitz derivatives. Givenrpoata D, letf* be a
classifier that minimizes(§, ) and letfyy be the classifier output by Algorithm 1. Then

2d?(c+An)log?(d/d)
Nn2ed

Z 1_67

where the probability is taken over the randomness in the rimideAlgorithm 1.

Note that wherf is doubly differentiable¢ is an upper bound on the double derivative/ odind
is the same as the constarih Theorem 9.
Proof Let D = {(X1,Y¥1),--.,(Xn,¥n)}, and recall thaf|xij|| < 1, and|yi| < 1. AsN(-) and/ are
differentiable, we use the Mean Value Theorem to show that for $dreveen 0 and 1,

I(Foriv, D) — I(F*, D) = (foriy — )T OI(EF* + (1 —t)Fpriv)
< fpriv — | - [[OIEF + (1 —)fpriv) ], (11)

where the second step follows by an application of the Cauchy-Schwaduaality. Recall that
0J(f, D) = AON(f) + % Zyiﬁ’(yifoi)xi.
|
Moreover, recall thaflJ(f*, D) = 0, from the optimality of*. Therefore,
OJ(tf* + (1 —t)fpriv, D) = OI(f*, D) — A(ON(F*) — ON(tF* + (L —t)fpriv))

— % Z Vi (E’(yi (f*)TXi) — 0 (y(tF + (12— t)fpriv)TXi)) Xj. (12)
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Now, from the Lipschitz condition o#, for eachi we can upper bound each term in the summation
above:

i (¢ (i (F)Tx0) — € (% (EF* -+ (L)) Tx0)) |
< Wil 111 1 O () T ) — £ (i (tF + (1= )fpr) T0)|
< Iyl 11l ¢ yi (1= ) (F — forv) T
< c(L—t)[yil?- 1] [2- [1F* — Fori|
< c(1-t)[f* —fprv]|- (13)

The third step follows becaugeis c-Lipschitz and the last step follows from the boundsyhand
||xi||. BecauseN is doubly differentiable, we can apply the Mean Value Theorem again tdwda
that

[ION(E + (1= t)fpriv) — ON(F) || < (1= 1)][fpay — |- | T°N(E")][2 (14)

for somef” € RY.
As 0<t <1, we can combine (12), (13), and (14) to obtain

DI + (L= )fprv, D)|| < AON(E) — ON(EF + (L—t)fpr)) |

L O~ LR+ (L= Ufpr) X))

< (1—t) [[fpriv — |- </\n+i-n-c>
< |[forv — ]| (An +©). (15)

+

From the definition of Algorithm 1f,, — f* = b, whereb is the noise vector. Now we can apply
Lemma 17 td |fpry — *||, with parameter& = d, and® = 12-. From Lemma 17, with probability

Angp*
2dlog(9)
1-39, ||fpriv —f*|| < /\nspa

. The Lemma follows by combining this with Equations 15 and 11.
[ |

Lemma 17 Let X be a random variable drawn from the distributibtk, 8), where k is an integer.

Then,
k
P <X < kBlog <6>) >1-0.

Proof Sincek is an integer, we can decomposelistributed according tb(k,8) as a summation

X =Xg+... +X,
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whereXp, X, . .., Xk are independent exponential random variables with ne&or each we have
P(X > Blog(k/d)) = d/k. Now,

P(X < kBlog(k/d)) > P(X < 6log(k/d)i=1,2,...,k)
(1-3/K)"
1-9d.

v

4.2 Obijective Perturbation

We now establish performance bounds on Algorithm 2. The bound cambarized as follows.

Theorem 18 Let N(f) = %|]f||2, and letfo be a classifier with expected loséfy) = L*. Let/ be

convex, doubly differentiable, and let its derivatives satiéfy)| < 1and|¢”(z)| < c for all z. Then
there exists a constant C such that&s 0, if the n training samples ith are drawn i.i.d. according
to P, and if

? 2 dl f
n><:max<”f°H og(/3) cifoll” s o|>7

g €g€p €g€p
then the output,, of Algorithm 2 satisfies

Proof Let
frr = argmind(f),
f

f* = argminl(f, D),
f

andf,y denote the output of Algorithm 1. As in Theorem 15, the analysis of Staievartz and
Srebro (2008) shows

Lfpr) = L)+ (3tpr) — 0hae) + () —30f0)) + 3ol = Sl fpnl 2. (16)

We will bound each of the terms on the right hand-side.

If n> °”f°” andA > 4Hf Ao 2 thennA > 48 , S0 from the definition ot’ in Algorithm 2,

C Ep €p
s’p:sp—ZIog<1+m> :sp—ZIog(lJrZ) zep—?,

where the last step follows because(lbg x) < x for x € [0, 1]. Note that for these values 6fwe
havee, > 0.
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Therefore, we can apply Lemma 19 to conclude that with probability at leasi @ver the
privacy mechanism,

‘ 4d?log’(d/d)

J(fpriw D) _‘](f afD) < TZS%

From Sridharan et al. (2008),

An
- 8d2log?(d/d) ‘0 (Iog(l/é)) ‘

/\nZE% An

(forv) — I(far) < 23 (fpriv, D) — I(F*, D)) + O (Iog(l/6)>

By definition off*, we havel(fy) — J(fo) < 0. If Ais set to beﬁ, then, the fourth quantity

in Equation 16 is at mos‘?. The theorem follows by solving farto make the total excess error at
mosteg. n

The following lemma is analogous to Lemma 16, and it establishes a bound on tiecdis
between the output of Algorithm 2, and non-private regularized ERM.ndte that this bound
holds when Algorithm 2 has;, > 0, that is, whem = 0. Ensuring thafA = 0 requires an additional
condition onn, which is stated in Theorem 18.

Lemma 19 Lete, > 0. Letf* = argminJ(f, D), and letfyy be the classifier output by Algorithm
2. If N(+) is 1-strongly convex and globally differentiable, and is convex and differentiable at all
points, with|¢'(z)| < 1 for all z, then

2 2
Py (J(fpm,m <3, D) + “d"’g(d/é)> >1-5,

2¢2
An<eg

where the probability is taken over the randomness in the ribdeAlgorithm 2.

Proof By the assumptiosl/p > 0, the classifief,, minimizes the objective functial(f, D) + %be,
and therefore

1

First, we try to bound|f* —f,y||. Recall thatAN(-) is A-strongly convex and globally differen-
tiable, and/ is convex and differentiable. We can therefore apply Lemma 7 @fth = J(f, D) and
g(f) = 2b™f to obtain the bound

1

1 b
I =t < 7 |07 | < I

< —.
'_n/\

Therefore by the Cauchy-Schwartz inequality,

1b]|?

nA -

Since||b|| is drawn from al'(d,%) distribution, from Lemma 17, with probability 1, ||b|| <

2dlog(d/d)
€p

J(fpriv, Q)) - J(f*, Q)) S

. The Lemma follows by plugging this in to the previous equation. |
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4.3 Applications

In this section, we examine the sample requirement of privacy-presemiudarized logistic re-
gression and support vector machines. Recall that in both these NéBes;, 3 |/f||.

Corollary 20 (Logistic Regression) Let training data? be generated i.i.d. according to a distri-
bution P and lefy be a classifier with expected los&) = L*. Let the loss functioA= ¢, g defined
in Section 3.4.1. Then the following two statements hold:

1. There exists asuch that if

n>ClmaX<Hfonlog(é) dlog($)][fol| dlog(g)HfoH2>

2 ’ ’ 3/2
€§ €g€p sg/ £

then the outputyyi, of Algorithm 1 satisfies

2. There exists a£such that if

Ifol|2log(1/8) |[fol |2 dlog(gmfou)

n > Cmax > , ,
&g €g€p €g€p

then the outputyiy of Algorithm 2 with c= 211 satisfies

Proof Since/|r is convex and doubly differentiable for amy, z,,
R(z) —lRr(22) <UR(Z) (21 —2)

for somez* € [z, ). Moreover,|(/z(z")| < c= 1, so¢' is ;-Lipschitz. The corollary now follows
from Theorems 15 and 18. |

For SVMs we state results with= ¢nuper, but a similar bound can be shown f@ras well.

Corollary 21 (Huber Support Vector Machines) Let training data? be generated i.i.d. accord-
ing to a distribution P and lety be a classifier with expected loséfy) = L*. Let the loss function
£ = fyuperdefined in(7). Then the following two statements hold:

1. There exists asuch that if

n>clmax<"f°”2'°9<%> dlog($)][fol| dlog(g)HfoHZ)

& | &f | hl2e)’%,
then the outputyyi, of Algorithm 1 satisfies
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2. There exists a£such that if

2 2 | d f
n>CmaX<|fo| log(1/3) [[fol[2 dlog(3)]| 0H>

€2 "hegep”  €gEp
then the outputyiy of Algorithm 2 with c= ;11 satisfies

Proof The Huber loss is convex and differentiable with continuous derivatMeseover, since the
derivative of the Huber loss is piecewise linear with slope 0 or at %ijr anyz, z,

1
w—luber(zl) - gf—lube|(22)| < %h |21 — 25,

SO/} er IS 45 -Lipschitz. The first part of the corollary follows from Theorem 15.

For the second part of the corollary, we observe that from Coroll@rywe do not need to
be globally double differentiable, and the bound |éf(z)| in Theorem 18 is only needed to en-
sure that’Io > 0; sincelyuper is double differentiable except in a set of Lebesgue measure 0, with

[ uberd 2)] < 2—1h the corollary follows by an application of Theorem 18. |

5. Kernel Methods

A powerful methodology in learning problems is the “kernel trick,” which abahe efficient con-
struction of a predictof that lies in a reproducing kernel Hilbert space (RKH®)associated to

a positive definite kernel functiok(-,-). The representer theorem (Kimeldorf and Wahba, 1970)
shows that the regularized empirical risk in (1) is minimized by a fundt{ah that is given by a
linear combination of kernel functions centered at the data points:

f(x) = __iak(x(i),x). )

This elegant result is important for both theoretical and computationabmeasComputationally,
one releases the valuascorresponding to théthat minimizes the empirical risk, along with the
data point(i); the user classifies a nexby evaluating the function in (17).

A crucial difficulty in terms of privacy is that this directly releases the pgavealuesx(i) of
some individuals in the training set. Thus, even if the classifier is computedrivegy-preserving
way, any classifier released by this process requires revealing the\Watarovide an algorithm
that avoids this problem, using an approximation method (Rahimi and Recht, 2008b) to ap-
proximate the kernel function using random projections.

5.1 Mathematical Preliminaries

Our approach works for kernel functions which are translation inmgrisok(x,x’) = k(x — x').
The key idea in the random projection method is from Bochner’'s Theordnchvstates that a
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continuous translation invariant kernel is positive definite if and only if itésRburier transform of
a nonnegative measure. This means that the Fourier trangf@@jnof translation-invariant kernel

function k(t) can be normalized so th&t(6) = K(8)/||[K(8)||, is a probability measure on the
transform spac®. We will assumeK(0) is uniformly bounded ove®.
In this representation

K(x,x') = / o(x: 8)@(x'; 8)K (8)d, (18)
e
where we will assume the feature functiapg; 8) are bounded:

lo(x;8)| <L VxeX,Veco.

A functionf € A can be written as

F(x) = /@ a(8)o(x; B)K (8)d6.

To prove our generalization bounds we must show that bounded cleskifiduce bounded func-
tionsa(B). Writing the evaluation functional as an inner product vkitk, x') and (18) shows

F(x) = /e ( /X f(x’)(p(x’;@)dx’) o(x; 6)K(6)ds.
Thus we have

a(6) = /X F(x') @(X'; B) X’
|a(0) < Vol (x) - ¢ [[f]l.,.

This shows tha&(0) is bounded uniformly ove® whenf(x) is bounded uniformly ovex. The

volume of the unit ball is Vglx) = % (see Ball, 1997 for more details). For lardehis is
2

(4/ %‘e)d by Stirling’s formula. Furthermore, we have
111, = [ a(®)?K{@)de.
e

5.2 A Reduction to the Linear Case

We now describe how to apply Algorithms 1 and 2 for classification with kerbglsransforming
to linear classification. Givef8;}, letR: X — RP be the map that sendsi) to a vectorv(i) €
RP wherevj (i) = @(x(i);8;) for j € [D]. We then use Algorithm 1 or Algorithm 2 to compute a
privacy-preserving linear classifiem RP. The algorithm releasd®andf. The overall classifier is
forv (%) = F(R(X)).

As an example, consider the Gaussian kernel

k(x,X') = exp(—ny—x’H;) :

The Fourier transform of a Gaussian is a Gaussian, so we can s@mpl@v, p) according to the
distribution Unifornj—1t, 1 x A((0,2ylq) and compute; = cogw'x + ). The random phase is
used to produce a real-valued mapping. The paper of Rahimi and R&EI8) has more examples
of transforms for other kernel functions.
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Algorithm 3 Private ERM for nonlinear kernels
Inputs: Data{(x;,y;) :i € [n]}, positive definite kernel functiok(-, ), sampling functiork (),
parametersp, A\, D
Outputs: Predictorfyy, and pre-filter{8; : j € [D]}.
Draw {0; : j = 1,2,...,D} iid according toK (8).
Setv(i) = 1/2/D]@(x(i);61) - --®(x(i); 8p)]" for eachi.
Run Algorithm 1 or Algorithm 2 with datd(v(i),y(i)) } and parameters,, A.

5.3 Privacy Guarantees

Because the workhorse of Algorithm 3 is a differentially-private vergibERM for linear classi-
fiers (either Algorithm 1 or Algorithm 2), and the poir; : j € [D]} are independent of the data,
the privacy guarantees for Algorithm 3 follow trivially from Theorems @l &n

Theorem 22 Given data{ (x(i),y(i)) : i = 1,2,...,n} with (x(i),y(i)) and ||x(i)|| < 1, the outputs
(foriv, {8j : ] € [D]}) of Algorithm 3 guarantee,-differential privacy.

The proof trivially follows from a combination of Theorems 6, 9, and thé faat thed;’s are
drawn independently of the input data set.

5.4 Generalization Performance

We now turn to generalization bounds for Algorithm 3. We will prove resuiagiobjective per-
turbation (Algorithm 2) in Algorithm 3, but analogous results for outputyrdation (Algorithm 1)
are simple to prove. Our comparisons will be against arbitrary predigiersose norm is bounded
in some sense. That is, given fywith some properties, we will choose regularization parameter
A, dimensionD, and number of samplesso that the predictdiy, has expected loss close to that
of fo.

In this section we will assumi(f) = 3 If]|? so thatN(-) is 1-strongly convex, and that the loss
function/ is convex, differentiable and’(z)| < 1 for all z

Our first generalization result is the simplest, since it assumes a strongiaortat gives
easy guarantees on the projections. We would like the predictor prodhycAthorithm 3 to be
competitive against afp such that

fo(x) = | 20(8)g(x O)K(©)de. (19)

and|ap(0)| < C (see Rahimi and Recht, 2008b). Our first result provides the techmidiaing
block for our other generalization results. The proof makes use of fdeasRahimi and Recht
(2008b) and techniques from Sridharan et al. (2008); Shalev4&hesad Srebro (2008).

Lemma 23 Let fp be a predictor such thafag(0)| < C, for all 8, where g(0) is given by (19),
and suppose (fp) = L*. Moreover, suppose thdt(-) is c-Lipschitz. If the dataD is drawn i.i.d.
according to P, then there exists a constagtsGch that if

c2,/log(1/8) . Clog(1/d) Ceg
n>Co-max< €p€2 ‘log g0 gplog(1/d) |’ (20)
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then/\ and D can be chosen such that the outipu of Algorithm 3 using Algorithm 2 satisfies

Proof Since|ag()| < C and theK(8) is bounded, we have (Rahimi and Recht, 2008b, Theorem 1)
that with probability 1- 23 there exists afi, € RP such that

Lam<um+0<(}+\[> ¢m;) (21)

We will chooseD to make this loss small. Furthermofg,is guaranteed to havé,|, <C/D, so

CZ
f < — 22
Ifol3 < 5 (22)

Now given such arfi, we must show thatt,, will have true risk close to that df, as long as
there are enough data points. This can be shown using the techniquetew Shaartz and Srebro
(2008). Let

— N
IO =LE+5 113,
and let

frr = argmind(f)
feRD

minimize the regularized true risk. Then

I(fpriv) = I(Fp) + (Q(fpriv) — I(frir)) + (I(Frir) — I(Fp)).-

Now, since.J_(-) is minimized byfy, the last term is negative and we can disregard it. Then we have

- — N\ N 2
L(fpriv) - L(fp) < (J(fpriv) - J(frtr)> + E ||fp||§ - 5 prrivHZ' (23)
From Lemma 19, with probability at least-1 over the noisd,

4D?log?(D/d)

24
/\nzelzJ (24)

JI(fpriv) —J <argmin](f)) <
f
Now we can bound the tertfd(fory) — J(frir)) by twice the gap in the regularized empirical risk
difference (24) plus an additional term (Sridharan et al., 2008, Coyd)a That is, with probability
1-0o:

ﬂmm—ﬂmogaxwm—xmm+0<b%ﬂ&>. (25)

If we setn > 4%,/\' thene’p > 0, and we can plug Lemma 19 into (25) to obtain:

DGO/5 (1115

/\nze% An

I(fpriv) = I(frr) < (26)
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2 and setting\ = g/ ||f,||?

Plugging (26) into (23), discarding the negative term involvitig||,

gives

8|/fpl|5D?log?(D/3) Ifpll2logd g
L(fyiy) — L(f +0| ——— =2 =, 27
( p”V) ( p) HZS%SQ neg + 2 ( )

Now we have, using (21) and (27), that with probability 45:
L(fpriv) —L(fo) < (L(fpriv) — L(fp)) + (L(fp) — L(fo))
- 8lfpll;D?log?(D/3) (pruzlog 1/3) )

2¢2
n’e3eq

&
+2

+o<<\m+\5>c Iogé),

8C2Dlog?(D/3) L0 (c2|og(1/6)>

262
N“€5Eg Dnsg

Substituting (22), we have

&g
+2

L (foriv) — L(fo) <

+0 (l +—= Iog
Vi f
To set the remaining parameters, we will chobBse n so that

L (foriv) — L(fo) < 8C*Dlog*(D/9) +0 <C2|°g(1/6)> +8940 (C\/W> :

262 2
N°egeg Dngg 2

We setD = O(C?log(1/3)/¢3) to make the last terrgy/6, and:

n2e2e3

C*log L log? 1091/ 2
) +o(9)+23
bEg

L(foriv) —L(fo) <O (

Settlngn as in (20) proves the result. Moreover, settimg- cllfell pH =Co- aplocgg(gl/é) ensures that

n> 4A£p. n

We can adapt the proof procedure to show that Algorithm 3 is competiti@mstgany clas-
sifier fo with a given bound orj|fy||.,. It can be shown that for some consténthat |ap(0)| <
Vol (X)C ||fol|,.- Then we can set this &in (20) to obtain the following result.

Theorem 24 Let fg be a classifier with nornilfo||,,, and let/'(-) be c-Lipschitz. Then for any
distribution P, there exists a constang €uch that if

Ifoll5 Z3(Vol (x))2 |09(1/5).logHfo||ooV0|(x)Z|09(1/5) Ceg (28)
EpE2 ggdl (3+1) "eplog(1/3) |

n>Co'max<

then/\ and D can be chosen such that the outfys, of Algorithm 3 with Algorithm 2 satisfies
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Proof SubstitutingC = Vol (X)||fol|,, in Lemma 23 we get the result. [ |

We can also derive a generalization result with respect to classifiers autioled||fo|| ;.

Theorem 25 Letfq be a classifier with nornfjfol|,;, and let?’ be c-Lipschitz. Then for any distri-
bution P, there exists a constang Such that if,
2 Gy max [ Mfoll5rZ2(V0I00))\/10G(L/8) | foll o Vol(X)2log(1/8) ez
€pEg g (3+1) "gp109(1/3) |’
then A and D can be chosen such that the output of Algorithm 3 run with Algorith@tigfies

Proof Letfy be a classifier with norifo||3, and expected lods(fo). Now consider

. TAN
fror = argfmlnL(f) + Trtr 1112,

for some/y, to be specified later. We will first need a bound|dg ||, in order to use our previous
sample complexity results. Sinég is a minimizer, we can take the derivative of the regularized
expected loss and set it to 0 to get:

) = 1 (5 [ A1) 9)dP0cy) )

- /:i (/X (afg(/)ﬁ(f(x),y)) : <6f?x’)f(x)> dP(x,y)) :

whereP(x,y) is a distribution on pairgx,y). Now, using the representer theore%f(x) =
k(x',x). Since the kernel function is bounded and the derivative of the loswayalupper bounded
by 1, so the integrand can be upper bounded by a constant. Kixgg is a probability distribution,
we have for all’ that|f; (X")| = O(1/Anr). Now we set\y = €4/ \|fo|]§{ to get

2
[feell = O (“O”ﬂ> |
&g

We now have two cases to consider, depending on whetlfigr < L(fri) or L(fo) > L(frr).
Case 1: Suppose thdt(fg) < L(frr). Then by the definition ofiy,

gy |frrl5 £
2 |lfoll% 2

2
Since's - {12 > 0, we havel (fur) — L(fo) < 3.
Case 2: Suppose thalt(fp) > L(fir). Then the regularized classifier has better generalization

performance than the original, so we have trivially théfty,) — L(fp) < %g
Therefore in both cases we have a bound|b||,, and a generalization gap ef/2. We can
now apply Theorem 24 to show that fiosatisfying (28) we have

P (L(foriv) — L(fo) < &g) > 1—40.
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6. Parameter Tuning

The privacy-preserving learning algorithms presented so far in thisrggsume that the regular-
ization constant\ is provided as an input, and is independent of the data. In actual appigatio
ERM, A is selected based on the data itself. In this section, we address this isaue: design an
ERM algorithm with end-to-end privacy, which seleft®ased on the data itself.

Our solution is to present a privacy-preserving parameter tuning taahniat is applicable
in general machine learning algorithms, beyond ERM. In practice, oneatfjypittnes parame-
ters (such as the regularization parameétgms follows: using data held out for validation, train
predictord(-; A\) for multiple values of\, and select the one which provides the best empirical per-
formance. However, even though the output of an algorithm presepweiferential privacy for a
fixed A (as is the case with Algorithms 1 and 2), by choosirglaased on empirical performance on
a validation set may violate,-differential privacy guarantees. That is, if the procedure thatspick
is not private, then an adversary may use the released classifier tthimfealue ofA and therefore
something about the values in the database.

We suggest two ways of resolving this issue. First, if we have accessrabes publicly
available data from the same distribution, then we can use this as a holdtmutiset/\. This/A can
be subsequently used to train a classifier on the private data. Since teeofAldoes not depend
on the values in the private data set, this procedure will still preserve thacprof individuals in
the private data.

If no such public data is available, then we need a differentially private gumiacedure. We
provide such a procedure below. The main idea is to train for differdnegeof A on separate
subsets of the training data set, so that the total training procedure still maiggadiifferential
privacy. We score each of these predictors on a validation set, amdeld (and hencd(-;A\))
using a randomized privacy-preserving comparison procedurel{topand Talwar, 2007). The
last step is needed to guarantgedifferential privacy for individuals in the validation set. This
final algorithm provides an end-to-end guarantee of differentiabpyivand renders our privacy-
preserving ERM procedure complete. We observe that both theselpresecan be used for tuning
multiple parameters as well.

6.1 Tuning Algorithm

Algorithm 4 Privacy-preserving parameter tuning
Inputs: DatabaseD, parametergAg, ..., Am}, €p.
Outputs: Parametefyy .
Divide 2 into m+ 1 equal portion®s, ..., Dy 1, €ach of sizq%.
For eachi =1,2,...,m, apply a privacy-preserving learning algorithm (for example Algorithms
1, 2, or 3) onD; with paramete\; ande to get outpuf;.
Evaluatez, the number of mistakes made fyon D 1. Setfpry = fi with probability

e tpZ /2

g = 72{11?8@/2.
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We note that the list of potentidl values input to this procedure should not be a function of
the private data set. It can be shown that the empirical errabgm of the classifier output by
this procedure is close to the empirical error of the best classifier in thigiset.,fm} on Dy,
provided|D| is high enough.

6.2 Privacy and Utility
Theorem 26 The output of the tuning procedure of Algorithm 4 jsdifferentially private.

Proof To show that Algorithm 4 preserves-differential privacy, we first consider an alternative
procedureM. Let M be the procedure that releases the valtigs..,fn, i) where,fq,... f, are
the intermediate values computed in the second step of Algorithm 4,iaride index selected by
the exponential mechanism step. We first show fapreserves,-differential privacy. _

Let D and 2’ be two data sets that differ in the value of one individual such that D U
{(x.y)}, andD’ = DU{(X.y)}.

Recall that the data setB, ..., Dy 1 are disjoint; moreover, the randomness in the privacy
mechanisms are independent. Therefore,

P(fléSl,...,fmGSm,i :|*|@)

S1X..Sm

m
= ]P)(i:i*’fly--wfma@ml)I_Lp'j(f”@j)dfl“'dfma (29)
S1X...5m =

wherey;(f) is the density af induced by the classifier run with parameftgr, andp(fy, ..., fy) is
the joint density afy,...,fm, induced byM. Now suppose thaix,y) € D;, for j = m+1. Then,
Dk = Dy, andy (fj|Dy) =y (f;|Dj), for k € [m]. Moreover, given any fixed sét,...,fm,

P(i =i*[Dpnya, 1, ... fm) S EPP(i =i%| Dipa,fa, ... ). (30)
Instead, if(x,y) € Dj, for j € [m], then, D = Dy, fork € [m+ 1],k # j. Thus, for a fixedy, ..., fm,

]P(' - i*‘@r{n_%l,fl,...,fm) - P(' - i*‘@m_t,_]_,fl,...,fm), (31)
Hi(fil Dhe) < €¥Ppie(Fic| Dh)- (32)

The lemma follows by combining (29)-(32).

Now, an adversary who has access to the output/ofan compute the output of Algorithm
4 itself, without any further access to the data set. Therefore, by a simulatdoigiyment, as in
Dwork et al. (2006b), Algorithm 4 also presengsdifferential privacy. |

In the theorem above, we assume that the individual algorithms for prpmaserving classifi-
cation satisfy Definition 2; a similar theorem can also be shown when theyysatigfarantee as in
Corollary 13.

The following theorem shows that the empirical error®g, 1 of the classifier output by the
tuning procedure is close to the empirical error of the best classifier iethgs. . ., fx }. The proof
of this Theorem follows from Lemma 7 of McSherry and Talwar (2007).
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Theorem 27 Let zyjn = min;z, and let z be the number of mistakes made gnby the classifier
output by our tuning procedure. Then, with probability &,
2log(m/d
z< Zmin+7g( / ).
€p
Proof In the notation of McSherry and Talwar (2007), thg, = OPT, the base measufeis
uniform on[m|, andS = {i : z < zmin+1t}. Their Lemma 7 shows that

— exp(—¢pt)
P (%) < us)

wherep is the uniform measure om]. Using minu(S) = n% to upper bound the right side and
setting it equal t@® we obtain
1

t=—Io m
_ep g .

From this we have

2. m
> Zmin+ —log= | <
P(ZZm.n+sp log 6) <39,

and the result follows. [ ]

7. Experiments

In this section we give experimental results for training linear classifiers A¥ghrithms 1 and 2

on two real data sets. Imposing privacy requirements necessarilyddsgehassifier performance.
Our experiments show that provided there is sufficient data, objectitarbation (Algorithm 2)
typically outperforms the sensitivity method (1) significantly, and achieves egite close to that

of the analogous non-private ERM algorithm. We first demonstrate howctheacy of the classi-
fication algorithms vary witlg,, the privacy requirement. We then show how the performance of
privacy-preserving classification varies with increasing training da&a siz

The first data set we consider is théul t data set from the UCI Machine Learning Repository
(Asuncion and Newman, 2007). This moderately-sized data set con&msgdaphic information
about approximately 4000 individuals, and the classification task is to predict whether the annual
income of an individual is below or above $50,000, based on variabbdsasuage, sex, occupation,
and education. For our experiments, the average fraction of positigks lsabout @25; therefore,

a trivial classifier that always predictsl will achieve this error-rate, and only error-rates below
0.25 are interesting.

The second data set we consider is KBBCup99 data set (Hettich and Bay, 1999); the task
here is to predict whether a network connection is a denial-of-serviakattanot, based on several
attributes. The data set includes about 5,000,000 instances. For this el@eetage fraction of
positive labels is 20.

In order to implement the convex minimization procedure, we use the conuérizgtion
library provided by Okazaki (2009).
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7.1 Preprocessing

In order to process thidul t data set into a form amenable for classification, we removed all entries
with missing values, and converted each categorial attribute to a binary.vEeotexample, an at-
tribute such agMal e, Femal e) was converted into 2 binary features. Each column was normalized
to ensure that the maximum value is 1, and then each row is normalized to éresuiee norm of
any example is at most 1. After preprocessing, each example wasaefaefy a 105-dimensional
vector, of norm at most 1.

For theKDDCup99 data set, the instances were preprocessed by converting each ichtagor
tribute to a binary vector. Each column was normalized to ensure that the maxmaiumis 1,
and finally, each row was normalized, to ensure that the norm of any éxasngt most 1. After
preprocessing, each example was represented by a 119-dimengotwa) of norm at most 1.

7.2 Privacy-Accuracy Tradeoff

For our first set of experiments, we study the tradeoff between thaqyrivequirement on the
classifier, and its classification accuracy, when the classifier is trainedtarof a fixed size. The
privacy requirement is quantified by the valueegf increasingep, implies a higher change in the
belief of the adversary when one entrydnchanges, and thus lower privacy. To measure accuracy,
we use classification (test) error; namely, the fraction of times the classieicts a label with the
wrong sign.

05 05

== Sensitivity LR == Sensitivity SVM
0451 = = = Objective LR 0.45(- = = = Objective SVM
=== Non-Private LR b === Non-Private SVM

04p 0.4fs
) “ Q .
© o35t 3 © 035 “
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T o3, “, T o3t %
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gom el goar Se v B
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0 0.b5 0.‘1 0.‘15 0:2 0.‘25 0.‘3 0.‘35 0.‘4 0.‘45 0.‘5 0 0}05 0‘.1 0}15 012 0}25 0‘.3 0}35 0‘.4 0;)5 0‘.5
Privacy parameter sp Privacy parameter ep
(a) Regularized logistic regressiokdul t (b) Regularized SVMAdul t

Figure 2: Privacy-Accuracy trade-off for tigul t data set

To study the privacy-accuracy tradeoff, we compare objective gtion with the sensitivity
method for logistic regression and Huber SVM. For Huber SVM, we pidckedHuber constant
h = 0.5, a typical value (Chapelle, 200¥)For each data set we trained classifiers for a few fixed
values of/AA and tested the error of these classifiers. For each algorithm we chosaltleeof A
that minimizes the error-rate fag = 0.1.2 We then plotted the error-rate agaiagtfor the chosen
value of /. The results are shown in Figures 2 and 3 for both logistic regressiosugbrt vector

1. Chapelle (2007) recommends usimetween M1 and 05; we useéh = 0.5 as we found that a higher value typically
leads to more numerical stability, as well as better performance for ivdcp-preserving methods.
2. ForKDDCup99 the error of the non-private algorithms did not increase with decredsing
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Figure 3: Privacy-Accuracy trade-off for th@®DCup99 data set

A | 107200 10770 1040 1035 10739
Logistic
Non-Private| 0.1540
Output 0.5318
Objective | 0.8248
Huber
Non-Private| 0.1527
Output 0.5318
Objective | 0.2585

102% 102° 101®

0.1533 0.1654 0.1694 0.1758 0.1895 0.2322 0.2478
0.5318 0.5175 0.4928 0.4310 0.316832395 0.2456
0.8248 0.8248 0.2694 0.2369.2161 0.2305 0.2475

0.1521 0.1632 0.1669 0.1719 0.1793 0.2454 0.2478
0.5318 0.5211 0.5011 0.4464 0.33522376 0.2476
0.2585 0.2585 0.2582 0.2559.2046 0.2319 0.2478

Table 1: Error for different regularization parametersAonl t for e, = 0.1. The best error per
algorithm is in bold.

machines. The optimal values of are shown in Tables 1 and 2. For non-private logistic regression
and SVM, each presented error-rate is an average over 10-fad-gadidation; for the sensitivity
method as well as objective perturbation, the presented error-rate v@eaga over 10-fold cross-
validation and 50 runs of the randomized training procedure. Agalt, the privacy-accuracy

tradeoff is computed over the entire data set, which consists,@P@5examples; fokDDCup99 we
use a randomly chosen subset of Q0 examples.

For theAdul t data set, the constant classifier that classifies all examples to be neghtiieea
a classification error of aboutZb. The sensitivity method thus does slightly better than this con-
stant classifier for most values gf for both logistic regression and support vector machines. Ob-
jective perturbation outperforms sensitivity, and objective perturbatioadpport vector machines
achieves lower classification error than objective perturbation for logisgiression. Non-private
logistic regression and support vector machines both have classificatiorabout 015.

3. The slight kink in the SVM curve oAdul t is due to a switch to the second phase of the algorithm.
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A ‘ 1079.0 1077.0 1&5.0 lch.S l(r3.0 1072.5 1072.0 1071.5
Logistic
Non-Private| 0.0016 0.0016 0.0021 0.0038 0.0037 0.0037 0.0325 0.0594
Output 0.5245 0.5245 0.5093 0.3518 0.1114 0.035®0304 0.0678
Objective | 0.2084 0.2084 0.2084 0.0196 0.0118.0113 0.0285 0.0591

Huber
Non-Private| 0.0013 0.0013 0.0013 0.0029 0.0051 0.0056 0.0061 0.0163
Output 0.5245 0.5245 0.5229 0.4611 0.3353 0.059m0092 0.0179
Objective | 0.0191 0.0191 0.0191 0.1827 0.0123 0.00680064 0.0157

Table 2: Error for different regularization parameterskddCup99 for €, = 0.1. The best error per
algorithm is in bold.

For theKDDCup99 data set, the constant classifier that classifies all examples as negasive, h
error Q19. Again, objective perturbation outperforms sensitivity for both logisgtgression and
support vector machines; however, for SVM and high values,alow privacy), the sensitivity
method performs almost as well as objective perturbation. In the low prieagme, logistic re-
gression under objective perturbation is better than support vectoimeackn contrast, in the high
privacy regime (lowep), support vector machines with objective perturbation outperform logistic
regression. For this data set, non-private logistic regression andrswegtor machines both have
a classification error of about@1.

For SVMs on bothAdul t andKDDCup99, for largee, (0.25 onwards), the error of either of the
private methods can increase slightly with increasipgThis seems counterintuitive, but appears
to be due the imbalance in fraction of the two labels. As the labels are imbalaheedptimal
classifier is trained to perform better on the negative labels than the pssifiee increases, for
a fixed training data size, so does the perturbation from the optimal classifiaced by either of
the private methods. Thus, as the perturbation increases, the numladgseopbsitives increases,
whereas the number of false negatives decreases (as we verifiedalsynng the average false
positive and false negative rates of the private classifiers). Therefte total error may increase
slightly with decreasing privacy.

7.3 Accuracy vs. Training Data Size Tradeoffs

Next we examine how classification accuracy varies as we increase ¢hef $ie training set. We
measure classification accuracy as the accuracy of the classifiecpbty the tuning procedure
in Section 6. As thé\dul t data set is not sufficiently large to allow us to do privacy-preserving
tuning, for these experiments, we restrict our attention tkKB€up99 data set.

Figures 4 and 5 present the learning curves for objective perturbatmmprivate ERM and
the sensitivity method for logistic loss and Huber loss, respectively. Erpats are shown for
gp = 0.01 andep, = 0.05 for both loss functions. The training sets (for each of 5 values)afre
chosen to be of siza = 60,000 ton = 120,000, and the validation and test sets each are of size
25,000. Each presented value is an average over 5 random permutatiibresdzfta, and 50 runs
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of the randomized classification procedure. For objective perturbatgmarformed experiment in
the regime whela’ID > 0, SoA = 0 in Algorithm 24

For non-private ERM, we present result for training sets from300,000 ton = 600 000. The
non-private algorithms are tuned by comparing 5 value& oh the same training set, and the test
set is of size 2300. Each reported value is an average over 5 random permutatioresdtth

We see from the figures that for non-private logistic regression goubstivector machines, the
error remains constant with increasing data size. For the private methedsror usually decreases
as the data size increases. In all cases, objective perturbation outpethe sensitivity method,
and support vector machines generally outperform logistic regression.
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Figure 4: Learning curves for logistic regression onKBBCup99 data set
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Figure 5: Learning curves for SVM on ti®DCup99 data set

4. This was chosen for a fair comparison with non-private as well asutpit perturbation method, both of which had
access to only 5 values 6.
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8. Discussions and Conclusions

In this paper we study the problem of learning classifiers with regulariagairigal risk minimiza-
tion in a privacy-preserving manner. We consider privacy inggeifferential privacy model of
Dwork et al. (2006b) and provide two algorithms for privacy-presgrERM. The first one is based
on the sensitivity method due to Dwork et al. (2006b), in which the outputeohtin-private algo-
rithm is perturbed by adding noise. We introduce a second algorithm lpasttee new paradigm
of objective perturbation. We provide bounds on the sample requirerhém¢se algorithms for
achieving generalization erreg. We show how to apply these algorithms with kernels, and finally,
we provide experiments with both algorithms on two real data sets. Our waddkasy knowledge,
the first to propose computationally efficient classification algorithms satgstiifferential privacy,
together with validation on standard data sets.

In general, for classification, the error rate increases as the priggoyrements are made more
stringent. Our generalization guarantees formalize this “price of priveeyr experiments, as well
as theoretical results, indicate that objective perturbation usually oatpesfthe sensitivity meth-
ods at managing the tradeoff between privacy and learning perfoen&uth algorithms perform
better with more training data, and when abundant training data is availablpetftemance of
both algorithms can be close to non-private classification.

The conditions on the loss function and regularizer required by outpuirpation and objective
perturbation are somewhat different. As Theorem 6 shows, outpturpation requires strong
convexity in the regularizer and convexity as well as a bounded desvatndition in the loss
function. The last condition can be replaced by a Lipschitz condition instdadever, the other
two conditions appear to be required, unless we impose some furthertressrion the loss and
regularizer. Objective perturbation on the other hand, requires stmmgexity of the regularizer,
convexity, differentiability, and bounded double derivatives in the lagstion. Sometimes, it is
possible to construct a differentiable approximation to the loss function,iétlee loss function is
not itself differentiable, as shown in Section 3.4.2.

Our experimental as well as theoretical results indicate that in generattigbjperturbation
provides more accurate solutions than output perturbation. Thus, if thdupstion satisfies the
conditions of Theorem 9, we recommend using objective perturbationone situations, such
as for SVMs, it is possible that objective perturbation does not direciyyaput applies to an
approximation of the target loss function. In our experiments, the losstadtital efficiency due to
such approximation has been small compared to the loss of efficiency drieattypand we suspect
that this is the case for many practical situations as well.

Finally, our work does not address the question of finding private solutmregularized ERM
when the regularizer is not strongly convex. For example, neither theitopgoturbation, nor the
objective perturbation method work fbg-regularized ERM. However, ib;-regularized ERM, one
can find a data set in which a change in one training point can significarahgetthe solution. As
aresult, it is possible that such problems are inherently difficult to solvatgty.

An open question in this work is to extend objective perturbation methods to gerreral
convex optimization problems. Currently, the objective perturbation methplieapto strongly
convex regularization functions and differentiable losses. Convex oiioiz problems appear
in many contexts within and without machine learning: density estimation, resailocation for
communication systems and networking, social welfare optimization in econcanid®lsewhere.
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In some cases these algorithms will also operate on sensitive or privateEdatading the ideas
and analysis here to those settings would provide a rigorous foundatipriiacy analysis.

A second open question is to find a better solution for privacy-presgctassification with
kernels. Our current method is based on a reduction to the linear casgthesalgorithm of Rahimi
and Recht (2008b); however, this method can be statistically inefficieshteguire a lot of training
data, particularly when coupled with our privacy mechanism. The reasoatishid algorithm of
Rahimi and Recht (2008b) requires the dimendionf the projected space to be very high for good
performance. However, most differentially-private algorithms perfaonse as the dimensionality
of the data grows. Is there a better linearization method, which is possibkgddpendent, that will
provide a more statistically efficient solution to privacy-preserving legrniith kernels?

A final question is to provide better upper and lower bounds on the samlérement of
privacy-preserving linear classification. The main open question héogui®vide a computation-
ally efficient algorithm for linear classification which has better statisticatieficy.

Privacy-preserving machine learning is the endeavor of designiagteranalogues of widely
used machine learning algorithms. We believe the present study is a staitib§ppdurther study
of the differential privacy model in this relatively new subfield of machiregnéng. The work of
Dwork et al. (2006b) set up a framework for assessing the priiakyg associated with publishing
the results of data analyses. Demanding high privacy requires sagyffitdiity, which in the context
of classification and prediction is excess loss or regret. In this papeemermbtrate the privacy-
utility tradeoff for ERM, which is but one corner of the machine learningldioApplying these
privacy concepts to other machine learning problems will lead to new aneétitey tradeoffs and
towards a set of tools for practical privacy-preserving learningmafiedence. We hope that our work
provides a benchmark of the current price of privacy, and inspiresowements in future work.

Acknowledgments

The authors would like to thank Sanjoy Dasgupta and Daniel Hsu foragweinters, and to ac-
knowledge Adam Smith, Dan Kifer, and Abhradeep Guha Thakurta, whget point out an error
in the previous version of the paper. The work of K. Chaudhuri and. S&wate was supported
in part by the California Institute for Telecommunications and Information feldyies (CALIT2)
at UC San Diego. K. Chaudhuri was also supported by National Sclemaedation 11S-0713540.
Part of this work was done while C. Monteleoni was at UC San Diego, wiptpat from National
Science Foundation 11S-0713540. The experimental results were nusdély by support from
the UCSD FWGrid Project, NSF Research Infrastructure Grant NumideD803622.

References

R. Agrawal and R. Srikant. Privacy-preserving data minir@l GMOD Record 29(2):439-450,
2000.

A. Asuncion and D.J. Newman. UCI Machine Learning Repository. Ugitye
of California, Irvine, School of Information and Computer Sciences0720 URL
http://ww.ics.uci.edu/ ~nlearn/ M.Repository.htm .

1105



CHAUDHURI, MONTELEONI AND SARWATE

L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou R3®78nonymized social net-
works, hidden patterns, and structural steganographyrdoeedings of the 16th International
World Wide Web Conferenc2007.

K. Ball. An elementary introduction to modern convex geometry. In S. Ledifpe Flavors of
Geometry volume 31 ofMathematical Sciences Research Institute Publicafigeges 1-58.
Cambridge University Press, 1997.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and KiwBa. Privacy, accuracy, and
consistency too: a holistic solution to contingency table releasePrdieedings of the 26th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of DatabagerS8y (PODSpages
273-282, 2007.

A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample cxitydier private
learning and private data release.Aroceedings of the 7th IACR Theory of Cryptography Con-
ference (TCQ)pages 437-454, 2010.

P Billingsley. Probability and measureA Wiley-Interscience publication. Wiley, New York [u.a.],
3. ed edition, 1995. ISBN 0471007102.

A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-intevactiatabase privacy.
In R. E. Ladner and C. Dwork, editorBroceedings of the 40th ACM Symposium on Theory of
Computing (STOG)pages 609-618. ACM, 2008. ISBN 978-1-60558-047-0.

S. Boyd and L. Vandenbergh€onvex OptimizatianCambridge University Press, Cambridge, UK,
2004.

O. Chapelle. Training a support vector machine in the prinNgural Computation19(5):1155—
1178, May 2007.

K. Chaudhuri and N. Mishra. When random sampling preservesqgyriva Cynthia Dwork, editor,
CRYPTQvolume 4117 ol ecture Notes in Computer Sciengages 198-213. Springer, 2006.
ISBN 3-540-37432-9.

K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regiogs In Proceedings of the
22nd Annual Conference on Neural Information Processing SysteiRS) 2008.

C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel, V. Sagspand |. Wegener, editors,
ICALP (2) volume 4052 ofLecture Notes in Computer Sciengages 1-12. Springer, 2006.
ISBN 3-540-35907-9.

C. Dwork and J. Lei. Differential privacy and robust statistics.Phoceedings of the 41st ACM
Symposium on Theory of Computing (ST(XDD9.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. rQ@iata, ourselves: Privacy via
distributed noise generation. In Serge Vaudenay, editidROCRYPTvolume 4004 ol ecture
Notes in Computer Scienggages 486—-503. Springer, 2006a.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sernisitin private data
analysis. In3rd IACR Theory of Cryptography Conferengeages 265-284, 2006b.

1106



DIFFERENTIALLY PRIVATE ERM

A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches imagy preserving data
mining. InProceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposilrnirariples
of Database Systems (PODSages 211-222, 2003.

S.R. Ganta, S.P. Kasiviswanathan, and A. Smith. Composition attacks afidrgirformation in
data privacy. IrProceedings of the 14th ACM SIGKDD International Conference on kediye
Discovery and Data Mining (KDDQ)pages 265273, 2008.

A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differentiaflyivate approximation
algorithms. InProceedings of the 2010 ACM-SIAM Symposium on Discrete Algoritf@i3A»
2010.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularizaditrfor the support vector
machine.Journal of Machine Learning Researd$11391-1415, 2004.

S. Hettich and S.D. Bay. The UCI KDD Archive. University of Californieyine, Department of
Information and Computer Science, 1999. URIL p: // kdd. i cs. uci . edu.

N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, Bearson, D. A.
Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals contrijptitate amounts of dna
to highly complex mixtures using high-density snp genotyping microarr&ysS Genetics4
(8):€1000167, 08 2008.

R. Jones, R. Kumar, B. Pang, and A. Tomkins. "i know what you diddastmer”: query logs
and user privacy. II€IKM '07: Proceedings of the Sixteenth ACM Conference on Information
and Knowledge Managememages 909-914, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-803-9.

S.P. Kasivishwanathan, M. Rudelson, A. Smith, and J. Ullman. The pripeiaitely releasing
contingency tables and the spectra of random matrices with correlated hoWwsoceedings of
the 42nd ACM Symposium on Theory of Computing (ST@@1)0.

S. A. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, an8rith. What can we learn
privately? InProc. of FOCS$2008.

G.S. Kimeldorf and G. Wahba. A correspondence between Bayesian #stiroa stochastic pro-
cesses and smoothing by splinésinals of Mathematical Statistic41:495-502, 1970.

S. Laur, H. Lipmaa, and T. Miel&inen. Cryptographically private support vector machines. In
Proceedings of the 12th ACM SIGKDD International Conference on Ketye Discovery and
Data Mining (KDD), pages 618-624, 2006.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniaghivdrsity: Privacy beyond
k-anonymity. InProceedings of the 22nd International Conference on Data Engine@éiGigE),
2006.

A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. VilhubBrivacy: Theory meets
practice on the map. IRroceedings of the 24th International Conference on Data Engineering
(ICDE), pages 277-286, 2008.

1107



CHAUDHURI, MONTELEONI AND SARWATE

O. L. Mangasarian, E. W. Wild, and G. Fung. Privacy-preservingsifigation of vertically par-
titioned data via random kernel&A\CM Transactions on Knowledge Discovery from D&¢B),
2008.

F. McSherry and K. Talwar. Mechanism design via differential gnyvdn Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science (F@&§s 94—-103, 2007.

A. Narayanan and V. Shmatikov. Robust de-anonymization of largesspitasets (how to break
anonymity of the netflix prize dataset). Rroceedings of 29th IEEE Symposium on Security and
Privacy, pages 111-125, 2008.

K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and samplingviat@data anal-
ysis. In David S. Johnson and Uriel Feige, editétsceedings of the 39th ACM Symposium on
the Theory of Computing (STO@ages 75-84. ACM, 2007. ISBN 978-1-59593-631-8.

N. Okazaki. liblbfgs: a library of limited-memory Broyden-Fletcher-Goltft&hanno (L-BFGS).
2009. URLht t p: // www. chokkan. or g/ sof tware/ | i bl bf gs/i ndex. htm .

A. Rahimi and B. Recht. Random features for large-scale kernel meghinProceedings of the
21st Annual Conference on Neural Information Processing SysteiRS) 2007.

A. Rahimi and B. Recht. Uniform approximation of functions with randormebasnProceedings
of the 46th Allerton Conference on Communication, Control, and Comp&diBa.

A. Rahimi and B. Recht. Weighted sums of random kitchen sinks : Replacing matiorizwith
randomization in learning. IRroceedings of the 22nd Annual Conference on Neural Information
Processing Systems (NIR2P08b.

R.T. Rockafellar and R J-B. Wet¥ariational Analysis Springer, Berlin, 1998.

B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learning in gddunction space: Privacy-
preserving mechanisms for SVM learning.http://arxiv.org/abs/0911.57Q0&009.

S. Shalev-Shwartz.Online Learning: Theory, Algorithms, and Application$hD thesis, The
Hebrew University of Jerusalem, July 2007.

S. Shalev-Shwartz and N. Srebro. SVM optimization : Inverse depeedamtraining set size. In
The 25th International Conference on Machine Learning (ICM2008.

K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast ratesgolarzed objectives. IRroceed-
ings of the 22nd Annual Conference on Neural Information Proceystems (NIPS2008.

L. Sweeney. Weaving technology and policy together to maintain confidentid¢ity:nal of Law,
Medicine and Ethics25:98—-110, 1997.

L. Sweeney. k-anonymity: a model for protecting privatgternational Journal on Uncertainty,
Fuzziness and Knowledge-Based Syst®@2.

V. Vapnik. Statistical Learning TheoryJohn Wiley & Sons, New York, 1998.

1108



DIFFERENTIALLY PRIVATE ERM

R. Wang, Y. F. Li, X. Wang, H. Tang, and X.-Y. Zhou. Learning youentity and disease from
research papers: information leaks in genome wide association stu@®CNhConference on
Computer and Communications Securjigges 534-544, 2009.

L. Wasserman and S. Zhou. A statistical framework for differentiagesnJournal of the American
Statistical Associationl05(489):375-389, 2010.

A. C.-C. Yao. Protocols for secure computations (extended abstrac23rdl Annual Symposium
on Foundations of Computer Science (FOGs)ges 160-164, 1982.

J. Z. Zhan and S. Matwin. Privacy-preserving support vector madtiassificationInternational
Journal of Intelligent Information and Database Systeh{8/4):356—385, 2007.

S. Zhou, K. Ligett, and L. Wasserman. Differential privacy with comgi@as InProceedings of
the 2009 International Symposium on Information The&egoul, South Korea, 2009.

1109



