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Abstract

Privacy-preserving machine learning algorithms are crucial for the increasingly common setting
in which personal data, such as medical or financial records,are analyzed. We provide general
techniques to produce privacy-preserving approximationsof classifiers learned via (regularized)
empirical risk minimization (ERM). These algorithms are private under theε-differential privacy
definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et
al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for
privacy-preserving machine learning algorithm design. This method entails perturbing the objective
function before optimizing over classifiers. If the loss andregularizer satisfy certain convexity and
differentiability criteria, we prove theoretical resultsshowing that our algorithms preserve privacy,
and provide generalization bounds for linear and nonlinearkernels. We further present a privacy-
preserving technique for tuning the parameters in general machine learning algorithms, thereby
providing end-to-end privacy guarantees for the training process. We apply these results to produce
privacy-preserving analogues of regularized logistic regression and support vector machines. We
obtain encouraging results from evaluating their performance on real demographic and benchmark
data sets. Our results show that both theoretically and empirically, objective perturbation is superior
to the previous state-of-the-art, output perturbation, inmanaging the inherent tradeoff between
privacy and learning performance.

Keywords: privacy, classification, optimization, empirical risk minimization, support vector ma-
chines, logistic regression

1. Introduction

Privacy has become a growing concern, due to the massive increase in personal information stored
in electronic databases, such as medical records, financial records,web search histories, and social
network data. Machine learning can be employed to discover novel population-wide patterns, how-
ever the results of such algorithms may reveal certain individuals’ sensitive information, thereby
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violating their privacy. Thus, an emerging challenge for machine learning ishow to learn from data
sets that contain sensitive personal information.

At the first glance, it may appear that simple anonymization of private information is enough to
preserve privacy. However, this is often not the case; even if obvious identifiers, such as names and
addresses, are removed from the data, the remaining fields can still form unique “signatures” that
can help re-identify individuals. Such attacks have been demonstrated byvarious works, and are
possible in many realistic settings, such as when an adversary has side information (Sweeney, 1997;
Narayanan and Shmatikov, 2008; Ganta et al., 2008), and when the data has structural properties
(Backstrom et al., 2007), among others. Moreover, even releasing statistics on a sensitive data set
may not be sufficient to preserve privacy, as illustrated on genetic data (Homer et al., 2008; Wang
et al., 2009). Thus, there is a great need for designing machine learningalgorithms that also preserve
the privacy of individuals in the data sets on which they train and operate.

In this paper we focus on the problem of classification, one of the fundamental problems of
machine learning, when the training data consists of sensitive information of individuals. Our work
addresses the empirical risk minimization (ERM) framework for classification,in which a classifier
is chosen by minimizing the average over the training data of the prediction loss (with respect
to the label) of the classifier in predicting each training data point. In this work,we focus on
regularized ERM in which there is an additional term in the optimization, called the regularizer,
which penalizes the complexity of the classifier with respect to some metric. Regularized ERM
methods are widely used in practice, for example in logistic regression and support vector machines
(SVMs), and many also have theoretical justification in the form of generalization error bounds with
respect to independently, identically distributed (i.i.d.) data (see Vapnik, 1998 for further details).

For our privacy measure, we use a definition due to Dwork et al. (2006b), who have proposed a
measure of quantifying the privacy-risk associated with computing functions of sensitive data. Their
ε-differential privacymodel is a strong, cryptographically-motivated definition of privacy that has
recently received a significant amount of research attention for its robustness to known attacks, such
as those involving side information (Ganta et al., 2008). Algorithms satisfyingε-differential privacy
are randomized; the output is a random variable whose distribution is conditioned on the data set.
A statistical procedure satisfiesε-differential privacy if changing a single data point does not shift
the output distribution by too much. Therefore, from looking at the output ofthe algorithm, it is
difficult to infer the value of any particular data point.

In this paper, we develop methods for approximating ERM while guaranteeingε-differential
privacy. Our results hold for loss functions and regularizers satisfying certain differentiability and
convexity conditions. An important aspect of our work is that we develop methods forend-to-end
privacy; each step in the learning process can cause additional risk of privacyviolation, and we
provide algorithms with quantifiable privacy guarantees for training as wellas parameter tuning.
For training, we provide two privacy-preserving approximations to ERM.The first isoutput per-
turbation, based on thesensitivity methodproposed by Dwork et al. (2006b). In this method noise
is added to the output of the standard ERM algorithm. The second method is novel, and involves
adding noise to the regularized ERM objective function prior to minimizing. We call this second
methodobjective perturbation. We show theoretical bounds for both procedures; the theoretical
performance of objective perturbation is superior to that of output perturbation for most problems.
However, for our results to hold we require that the regularizer be strongly convex (rulingL1 regular-
izers) and additional constraints on the loss function and its derivatives.In practice, these additional
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constraints do not affect the performance of the resulting classifier; wevalidate our theoretical re-
sults on data sets from the UCI repository.

In practice, parameters in learning algorithms are chosen via a holdout dataset. In the context of
privacy, we must guarantee the privacy of the holdout data as well. We exploit results from the theory
of differential privacy to develop a privacy-preserving parameter tuning algorithm, and demonstrate
its use in practice. Together with our training algorithms, this parameter tuning algorithm guarantees
privacy to all data used in the learning process.

Guaranteeing privacy incurs a cost in performance; because the algorithms must cause some
uncertainty in the output, they increase the loss of the output predictor. Because theε-differential
privacy model requires robustness against all data sets, we make no assumptions on the underlying
data for the purposes of making privacy guarantees. However, to prove the impact of privacy con-
straints on the generalization error, we assume the data is i.i.d. according to a fixed but unknown
distribution, as is standard in the machine learning literature. Although many of our results hold for
ERM in general, we provide specific results for classification using logistic regression and support
vector machines. Some of the former results were reported in Chaudhuri and Monteleoni (2008);
here we generalize them to ERM and extend the results to kernel methods, and provide experiments
on real data sets.

More specifically, the contributions of this paper are as follows:

• We derive a computationally efficient algorithm for ERM classification, based on the sen-
sitivity method due to Dwork et al. (2006b). We analyze the accuracy of thisalgorithm,
and provide an upper bound on the number of training samples required bythis algorithm to
achieve a fixed generalization error.

• We provide a general technique,objective perturbation, for providing computationally effi-
cient, differentially private approximations to regularized ERM algorithms. This extends the
work of Chaudhuri and Monteleoni (2008), which follows as a specialcase, and corrects an
error in the arguments made there. We apply the general results on the sensitivity method
and objective perturbation to logistic regression and support vector machine classifiers. In
addition to privacy guarantees, we also provide generalization bounds for this algorithm.

• For kernel methods with nonlinear kernel functions, the optimal classifier isa linear combi-
nation of kernel functions centered at the training points. This form is inherently non-private
because it reveals the training data. We adapt a random projection method due to Rahimi
and Recht (2007, 2008b), to develop privacy-preserving kernel-ERM algorithms. We provide
theoretical results on generalization performance.

• Because the holdout data is used in the process of training and releasing aclassifier, we
provide a privacy-preserving parameter tuning algorithm based on a randomized selection
procedure (McSherry and Talwar, 2007) applicable to general machine learning algorithms.
This guarantees end-to-end privacy during the learning procedure.

• We validate our results using experiments on two data sets from the UCI Machine Learning
repositories (Asuncion and Newman, 2007) and KDDCup (Hettich and Bay, 1999). Our
results show that objective perturbation is generally superior to output perturbation. We also
demonstrate the impact of end-to-end privacy on generalization error.
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1.1 Related Work

There has been a significant amount of literature on the ineffectivenessof simple anonymization
procedures. For example, Narayanan and Shmatikov (2008) show thata small amount of auxiliary
information (knowledge of a few movie-ratings, and approximate dates) is sufficient for an adver-
sary to re-identify an individual in the Netflix data set, which consists of anonymized data about
Netflix users and their movie ratings. The same phenomenon has been observed in other kinds of
data, such as social network graphs (Backstrom et al., 2007), search query logs (Jones et al., 2007)
and others. Releasing statistics computed on sensitive data can also be problematic; for example,
Wang et al. (2009) show that releasingR2-values computed on high-dimensional genetic data can
lead to privacy breaches by an adversary who is armed with a small amount of auxiliary information.

There has also been a significant amount of work on privacy-preserving data mining (Agrawal
and Srikant, 2000; Evfimievski et al., 2003; Sweeney, 2002; Machanavajjhala et al., 2006), spanning
several communities, that uses privacy models other than differential privacy. Many of the models
used have been shown to be susceptible tocomposition attacks, attacks in which the adversary has
some reasonable amount of prior knowledge (Ganta et al., 2008). Other work (Mangasarian et al.,
2008) considers the problem of privacy-preserving SVM classification when separate agents have
to share private data, and provides a solution that uses random kernels, but does provide any formal
privacy guarantee.

An alternative line of privacy work is in the secure multiparty computation setting due to Yao
(1982), where the sensitive data is split across multiple hostile databases, and the goal is to compute
a function on the union of these databases. Zhan and Matwin (2007) and Laur et al. (2006) consider
computing privacy-preserving SVMs in this setting, and their goal is to design a distributed protocol
to learn a classifier. This is in contrast with our work, which deals with a settingwhere the algorithm
has access to the entire data set.

Differential privacy, the formal privacy definition used in our paper,was proposed by the semi-
nal work of Dwork et al. (2006b), and has been used since in numerous works on privacy (Chaudhuri
and Mishra, 2006; McSherry and Talwar, 2007; Nissim et al., 2007; Barak et al., 2007; Chaudhuri
and Monteleoni, 2008; Machanavajjhala et al., 2008). Unlike many other privacy definitions, such
as those mentioned above, differential privacy has been shown to be resistant to composition attacks
(attacks involving side-information) (Ganta et al., 2008). Some follow-up work on differential pri-
vacy includes work on differentially-private combinatorial optimization, dueto Gupta et al. (2010),
and differentially-private contingency tables, due to Barak et al. (2007) and Kasivishwanathan et al.
(2010). Wasserman and Zhou (2010) provide a more statistical view of differential privacy, and
Zhou et al. (2009) provide a technique of generating synthetic data usingcompression via random
linear or affine transformations.

Previous literature has also considered learning with differential privacy. One of the first such
works is Kasiviswanathan et al. (2008), which presents a general, although computationally inef-
ficient, method for PAC-learning finite concept classes. Blum et al. (2008) presents a method for
releasing a database in a differentially-private manner, so that certain fixed classes of queries can
be answered accurately, provided the class of queries has a boundedVC-dimension. Their methods
can also be used to learn classifiers with a fixed VC-dimension (Kasiviswanathan et al., 2008) but
the resulting algorithm is also computationally inefficient. Some sample complexity lower bounds
in this setting have been provided by Beimel et al. (2010). In addition, Dwork and Lei (2009)
explore a connection between differential privacy and robust statistics, and provide an algorithm

1072



DIFFERENTIALLY PRIVATE ERM

for privacy-preserving regression using ideas from robust statistics. Their algorithm also requires a
running time which is exponential in the data dimension, which is computationally inefficient.

This work builds on our preliminary work in Chaudhuri and Monteleoni (2008). We first show
how to extend the sensitivity method, a form ofoutput perturbation, due to Dwork et al. (2006b),
to classification algorithms. In general, output perturbation methods alter the output of the func-
tion computed on the database, before releasing it; in particular the sensitivitymethod makes an
algorithm differentially private by adding noise to its output. In the classification setting, the noise
protects the privacy of the training data, but increases the prediction error of the classifier. Recently,
independent work by Rubinstein et al. (2009) has reported an extension of the sensitivity method
to linear and kernel SVMs. Their utility analysis differs from ours, and thus the analogous gen-
eralization bounds are not comparable. Because Rubinstein et al. use techniques from algorithmic
stability, their utility bounds compare the private and non-private classifiersusing the same value for
the regularization parameter. In contrast, our approach takes into account how the value of the regu-
larization parameter might change due to privacy constraints. In contrast,we propose theobjective
perturbationmethod, in which noise is added to theobjective functionbefore optimizing over the
space classifiers. Both the sensitivity method and objective perturbation result in computationally
efficient algorithms for our specific case. In general, our theoretical bounds on sample require-
ment are incomparable with the bounds of Kasiviswanathan et al. (2008) because of the difference
between their setting and ours.

Our approach to privacy-preserving tuning uses the exponential mechanism of McSherry and
Talwar (2007) by training classifiers with different parameters on disjoint subsets of the data and
then randomizing the selection of which classifier to release. This bears a superficial resemblance
to the sample-and-aggregate (Nissim et al., 2007) and V-fold cross-validation, but only in the sense
that only a part of the data is used to train the classifier. One drawback is that our approach requires
significantly more data in practice. Other approaches to selecting the regularization parameter could
benefit from a more careful analysis of the regularization parameter, asin Hastie et al. (2004).

2. Model

We will use‖x‖, ‖x‖∞, and‖x‖H to denote theℓ2-norm,ℓ∞-norm, and norm in a Hilbert spaceH ,
respectively. For an integern we will use[n] to denote the set{1,2, . . . ,n}. Vectors will typically
be written in boldface and sets in calligraphic type. For a matrixA, we will use the notation‖A‖2 to
denote theL2 norm ofA.

2.1 Empirical Risk Minimization

In this paper we develop privacy-preserving algorithms forregularized empirical risk minimization,
a special case of which is learning a classifier from labeled examples. We will phrase our problem
in terms of classification and indicate when more general results hold. Our algorithms take as input
training dataD = {(xi ,yi) ∈ X ×Y : i = 1,2, . . . ,n} of n data-label pairs. In the case of binary
classification the data spaceX = R

d and the label setY = {−1,+1}. We will assume throughout
thatX is the unit ball so that‖xi‖2 ≤ 1.

We would like to produce apredictor f : X → Y . We measure the quality of our predictor on
the training data via a nonnegativeloss functionℓ : Y ×Y → R.
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In regularized empirical risk minimization (ERM), we choose a predictorf that minimizes the
regularized empirical loss:

J(f,D) =
1
n

n

∑
i=1

ℓ(f(xi),yi)+ΛN(f). (1)

This minimization is performed overf in an hypothesis classH . The regularizerN(·) prevents
over-fitting. For the first part of this paper we will restrict our attention to linear predictors and with
some abuse of notation we will writef(x) = fTx.

2.2 Assumptions on Loss and Regularizer

The conditions under which we can prove results on privacy and generalization error depend on an-
alytic properties of the loss and regularizer. In particular, we will requirecertain forms of convexity
(see Rockafellar and Wets, 1998).

Definition 1 A function H(f) overf ∈ R
d is said to bestrictly convexif for all α ∈ (0,1), f, andg,

H (αf+(1−α)g)< αH(f)+(1−α)H(g).

It is said to beλ-strongly convexif for all α ∈ (0,1), f, andg,

H (αf+(1−α)g)≤ αH(f)+(1−α)H(g)− 1
2

λα(1−α)‖f−g‖2
2 .

A strictly convex function has a unique minimum (Boyd and Vandenberghe, 2004). Strong
convexity plays a role in guaranteeing our privacy and generalization requirements. For our privacy
results to hold we will also require that the regularizerN(·) and loss functionℓ(·, ·) be differentiable
functions off. This excludes certain classes of regularizers, such as theℓ1-norm regularizerN(f) =
‖f‖1, and classes of loss functions such as the hinge lossℓSVM(fTx,y) = (1−yfTx)+. In some cases
we can prove privacy guarantees for approximations to these non-differentiable functions.

2.3 Privacy Model

We are interested in producing a classifier in a manner that preserves the privacy of individual
entries of the data setD that is used in training the classifier. The notion of privacy we use is the
ε-differential privacy model, developed by Dwork et al. (2006b) (see also Dwork (2006)), which
defines a notion of privacy for a randomized algorithmA(D). SupposeA(D) produces a classifier,
and letD ′ be another data set that differs fromD in one entry (which we assume is the private
value of one person). That is,D ′ andD haven− 1 points(xi ,yi) in common. The algorithmA
provides differential privacy if for any setS , the likelihood thatA(D) ∈ S is close to the likelihood
A(D ′) ∈ S , (where the likelihood is over the randomness in the algorithm). That is, any single
entry of the data set does not affect the output distribution of the algorithmby much; dually, this
means that an adversary, who knows all but one entry of the data set, cannot gain much additional
information about the last entry by observing the output of the algorithm.

The following definition of differential privacy is due to Dwork et al. (2006b), paraphrased from
Wasserman and Zhou (2010).
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Figure 1: An algorithm which is differentially private. When data sets which are identical except
for a single entry are input to the algorithmA , the two distributions on the algorithm’s
output are close. For a fixed measurableS the ratio of the measures (or densities) should
be bounded.

Definition 2 An algorithmA(B) taking values in a setT providesεp-differential privacy if

sup
S

sup
D,D ′

µ(S | B =D)

µ(S | B =D ′)
≤ eεp, (2)

where the first supremum is over all measurableS ⊆ T , the second is over all data setsD andD ′

differing in a single entry, and µ(·|B) is the conditional distribution (measure) onT induced by
the outputA(B) given a data setB. The ratio is interpreted to be 1 whenever the numerator and
denominator are both 0.

Note that ifS is a set of measure 0 under the conditional measures induced byD andD ′, the
ratio is automatically 1. A more measure-theoretic definition is given in Zhou et al.(2009). An
illustration of the definition is given in Figure 1.

The following form of the definition is due to Dwork et al. (2006a).

Definition 3 An algorithmA providesεp-differential privacy if for any two data setsD andD ′ that
differ in a single entry and for any setS ,

exp(−εp)P(A(D ′) ∈ S)≤ P(A(D) ∈ S)≤ exp(εp)P(A(D ′) ∈ S), (3)

whereA(D) (resp.A(D ′)) is the output ofA on inputD (resp.D ′).

We observe that an algorithmA that satisfies Equation 2 also satisfies Equation 3, and as a
result, Definition 2 is stronger than Definition 3.

From this definition, it is clear that theA(D) that outputs the minimizer of the ERM objective
(1) does not provideεp-differential privacy for anyεp. This is because an ERM solution is a linear
combination of some selected training samples “near” the decision boundary. If D andD ′ differ in
one of these samples, then the classifier will change completely, making the likelihood ratio in (3)

1075



CHAUDHURI , MONTELEONI AND SARWATE

infinite. Regularization helps by penalizing theL2 norm of the change, but does not account how
the direction of the minimizer is sensitive to changes in the data.

Dwork et al. (2006b) also provide a standard recipe for computing privacy-preserving approxi-
mations to functions by adding noise with a particular distribution to the output of the function. We
call this recipe thesensitivity method.Let g : (Rm)n → R be a scalar function ofz1, . . . ,zn, where
zi ∈R

m corresponds to the private value of individuali; then the sensitivity ofg is defined as follows.

Definition 4 The sensitivity of a function g: (Rm)n →R is maximum difference between the values
of the function when one input changes. More formally, the sensitivity S(g) of g is defined as:

S(g) = max
i

max
z1,...,zn,z′i

∣

∣g(z1, . . . ,zi−1,zi ,zi+1, . . . ,zn)−g(z1, . . . ,zi−1,z
′
i ,zi+1, . . . ,zn)

∣

∣ .

To compute a functiong on a data setD = {z1, . . . ,zn}, the sensitivity method outputs
g(z1, . . . ,zn)+η, whereη is a random variable drawn according to the Laplace distribution, with
mean 0 and standard deviationS(g)

εp
. It is shown in Dwork et al. (2006b) that such a procedure is

εp-differentially private.

3. Privacy-preserving ERM

Here we describe two approaches for creating privacy-preservingalgorithms from (1).

3.1 Output Perturbation: The Sensitivity Method

Algorithm 1 is derived from thesensitivity methodof Dwork et al. (2006b), a general method for
generating a privacy-preserving approximation to any functionA(·). In this section the norm‖ · ‖
is theL2-norm unless otherwise specified. For the functionA(D) = argminJ(f,D), Algorithm 1
outputs a vectorA(D)+b, whereb is random noise with density

ν(b) =
1
α

e−β‖b‖ , (4)

whereα is a normalizing constant. The parameterβ is a function ofεp, and theL2-sensitivityof
A(·), which is defined as follows.

Definition 5 The L2-sensitivity of a vector-valued function is defined as the maximum change in the
L2 norm of the value of the function when one input changes. More formally,

S(A) = max
i

max
z1,...,zn,z′i

∥

∥A(z1, . . . ,zi , . . .)−A(z1, . . . ,z
′
i , . . .)

∥

∥ .

The interested reader is referred to Dwork et al. (2006b) for furtherdetails. Adding noise to the
output ofA(·) has the effect of masking the effect of any particular data point. However, in some
applications the sensitivity of the minimizer argminJ(f,D) may be quite high, which would require
the sensitivity method to add noise with high variance.
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Algorithm 1 ERM with output perturbation (sensitivity)
Inputs: DataD = {zi}, parametersεp, Λ.
Output: Approximate minimizerfpriv.

Draw a vectorb according to (4) withβ =
nΛεp

2 .
Computefpriv = argminJ(f,D)+b.

3.2 Objective Perturbation

A different approach, first proposed by Chaudhuri and Monteleoni (2008), is to add noise to the
objective function itself and then produce the minimizer of the perturbed objective. That is, we can
minimize

Jpriv(f,D) = J(f,D)+
1
n

bT f,

whereb has density given by (4), withβ = εp. Note that the privacy parameter here does not depend
on the sensitivity of the of the classification algorithm.

Algorithm 2 ERM with objective perturbation
Inputs: DataD = {zi}, parametersεp, Λ, c.
Output: Approximate minimizerfpriv.

Let ε′p = εp− log(1+ 2c
nΛ + c2

n2Λ2 ).
If ε′p > 0, then∆ = 0, else∆ = c

n(eεp/4−1)
−Λ, andε′p = εp/2.

Draw a vectorb according to (4) withβ = ε′p/2.
Computefpriv = argminJpriv(f,D)+ 1

2∆||f||2.

The algorithm requires a certain slack, log(1+ 2c
nΛ + c2

n2Λ2 ), in the privacy parameter. This is due
to additional factors in bounding the ratio of the densities. The “If” statementin the algorithm is
from having to consider two cases in the proof of Theorem 9, which shows that the algorithm is
differentially private.

3.3 Privacy Guarantees

In this section, we establish the conditions under which Algorithms 1 and 2 provide εp-differential
privacy. First, we establish guarantees for Algorithm 1.

3.3.1 PRIVACY GUARANTEES FOROUTPUT PERTURBATION

Theorem 6 If N(·) is differentiable, and1-strongly convex, andℓ is convex and differentiable, with
|ℓ′(z)| ≤ 1 for all z, then, Algorithm 1 providesεp-differential privacy.

The proof of Theorem 6 follows from Corollary 8, and Dwork et al. (2006b). The proof is
provided here for completeness.
Proof From Corollary 8, if the conditions onN(·) andℓ hold, then theL2-sensivity of ERM with
regularization parameterΛ is at most 2

nΛ . We observe that when we pick||b|| from the distribution

in Algorithm 1, for a specific vectorb0 ∈ R
d, the density atb0 is proportional toe−

nΛεp
2 ||b0||. LetD

1077



CHAUDHURI , MONTELEONI AND SARWATE

andD ′ be any two data sets that differ in the value of one individual. Then, for any f,

g(f|D)

g(f|D ′)
=

ν(b1)

ν(b2)
= e−

nΛεp
2 (||b1||−||b2||),

whereb1 andb2 are the corresponding noise vectors chosen in Step 1 of Algorithm 1, andg(f|D)
(g(f|D ′) respectively) is the density of the output of Algorithm 1 atf, when the input isD (D ′

respectively). Iff1 andf2 are the solutions respectively to non-private regularized ERM when the
input isD andD ′, then,b2−b1 = f2− f1. From Corollary 8, and using a triangle inequality,

||b1||− ||b2|| ≤ ||b1−b2||= ||f2− f1|| ≤
2

nΛ
.

Moreover, by symmetry, the density of the directions ofb1 andb2 are uniform. Therefore, by con-
struction,ν(b1)

ν(b2)
≤ eεp. The theorem follows.

The main ingredient of the proof of Theorem 6 is a result about the sensitivity of regularized
ERM, which is provided below.

Lemma 7 Let G(f) and g(f) be two vector-valued functions, which are continuous, and differen-
tiable at all points. Moreover, let G(f) and G(f)+g(f) beλ-strongly convex. Iff1 = argminf G(f)
andf2 = argminf G(f)+g(f), then

‖f1− f2‖ ≤
1
λ

max
f

‖∇g(f)‖ .

Proof Using the definition off1 andf2, and the fact thatG andg are continuous and differentiable
everywhere,

∇G(f1) = ∇G(f2)+∇g(f2) = 0. (5)

As G(f) is λ-strongly convex, it follows from Lemma 14 of Shalev-Shwartz (2007) that:

(∇G(f1)−∇G(f2))
T(f1− f2)≥ λ‖f1− f2‖2 .

Combining this with (5) and the Cauchy-Schwartz inequality, we get that

‖f1− f2‖ · ‖∇g(f2)‖ ≥ (f1− f2)
T∇g(f2) = (∇G(f1)−∇G(f2))

T(f1− f2)≥ λ‖f1− f2‖2 .

The conclusion follows from dividing both sides byλ‖f1− f2‖.

Corollary 8 If N(·) is differentiable and1-strongly convex, andℓ is convex and differentiable with
|ℓ′(z)| ≤ 1 for all z, then, the L2-sensitivity of J(f,D) is at most 2

nΛ .

Proof Let D = {(x1,y1), . . . ,(xn,yn)} andD ′ = {(x1,y1), . . . ,(x′n,y
′
n)} be two data sets that differ

in the value of then-th individual. Moreover, we letG(f) = J(f,D), g(f) = J(f,D ′)− J(f,D),
f1 = argminf J(f,D), andf2 = argminf J(f,D ′). Finally, we setg(f) = 1

n(ℓ(y
′
nfTx′n)− ℓ(ynfTxn)).
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We observe that due to the convexity ofℓ, and 1-strong convexity ofN(·), G(f) = J(f,D) is
Λ-strongly convex. Moreover,G(f)+g(f) = J(f,D ′) is alsoΛ-strongly convex. Finally, due to the
differentiability ofN(·) andℓ, G(f) andg(f) are also differentiable at all points. We have:

∇g(f) =
1
n
(ynℓ

′(ynfTxn)xn−y′nℓ
′(y′nfTx′n)x

′
n).

As yi ∈ [−1,1], |ℓ′(z)| ≤ 1, for all z, and||xi || ≤ 1, for anyf, ||∇g(f)|| ≤ 1
n(||xn−x′n||)≤ 1

n(||xn||+
||x′n||)≤ 2

n. The proof now follows by an application of Lemma 7.

3.3.2 PRIVACY GUARANTEES FOROBJECTIVE PERTURBATION

In this section, we show that Algorithm 2 isεp-differentially private. This proof requires stronger
assumptions on the loss function than were required in Theorem 6. In certain cases, some of these
assumptions can be weakened; for such an example, see Section 3.4.2.

Theorem 9 If N(·) is 1-strongly convex and doubly differentiable, andℓ(·) is convex and doubly
differentiable, with|ℓ′(z)| ≤ 1 and|ℓ′′(z)| ≤ c for all z, then Algorithm 2 isεp-differentially private.

Proof Consider anfpriv output by Algorithm 2. We observe that givenany fixed fpriv and a fixed
data setD, there always exists ab such that Algorithm 2 outputsfpriv on inputD. Becauseℓ
is differentiable and convex, andN(·) is differentiable, we can take the gradient of the objective
function and set it to0 at fpriv. Therefore,

b =−nΛ∇N(fpriv)−
n

∑
i=1

yiℓ
′(yi fT

privxi)xi −n∆fpriv. (6)

Note that (6) holds because for anyf, ∇ℓ(fTx) = ℓ′(fTx)x.
We claim that asℓ is differentiable andJ(f,D) + ∆

2 ||f||2 is strongly convex, given a data set
D = (x1,y1), . . . ,(xn,yn), there is a bijection betweenb andfpriv. The relation (6) shows that two
differentb values cannot result in the samefpriv. Furthermore, since the objective is strictly convex,
for a fixedb andD, there is a uniquefpriv; therefore the map fromb to fpriv is injective. The relation
(6) also shows that for anyfpriv there exists ab for which fpriv is the minimizer, so the map fromb
to fpriv is surjective.

To showεp-differential privacy, we need to compute the ratiog(fpriv|D)/g(fpriv|D ′) of the den-
sities offpriv under the two data setsD andD ′. This ratio can be written as (Billingsley, 1995)

g(fpriv|D)

g(fpriv|D ′)
=

µ(b|D)

µ(b′|D ′)
· |det(J(fpriv → b|D))|−1

|det(J(fpriv → b′|D ′))|−1 ,

whereJ(fpriv → b|D), J(fpriv → b|D ′) are the Jacobian matrices of the mappings fromfpriv to b,
andµ(b|D) andµ(b|D ′) are the densities ofb given the outputfpriv, when the data sets areD and
D ′ respectively.

First, we bound the ratio of the Jacobian determinants. Letb( j) denote thej-th coordinate ofb.
From (6) we have

b( j) =−nΛ∇N(fpriv)
( j)−

n

∑
i=1

ℓ′(yi fT
privxi)x

( j)
i −n∆f( j)

priv.
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Given a data setD, the( j,k)-th entry of the Jacobian matrixJ(f → b|D) is

∂b( j)

∂f(k)priv

=−nΛ∇2N(fpriv)
( j,k)−∑

i

y2
i ℓ

′′(yi fT
privxi)x

( j)
i x(k)i −n∆1( j = k),

where 1(·) is the indicator function. We note that the Jacobian is defined for allfpriv becauseN(·)
andℓ are globally doubly differentiable.

LetD andD ′ be two data sets which differ in the value of then-th item such that
D = {(x1,y1), . . . ,(xn−1,yn−1),(xn,yn)} andD ′ = {(x1,y1), . . . ,(xn−1,yn−1),(x′n,y

′
n)}. Moreover,

we define matricesA andE as follows:

A= nΛ∇2N(fpriv)+
n

∑
i=1

y2
i ℓ

′′(yi fT
privxi)xixT

i +n∆Id,

E =−y2
nℓ

′′(ynfT
privxn)xnxT

n +(y′n)
2ℓ′′(y′nfT

privx′n)x′nx′Tn .

Then,J(fpriv → b|D) =−A, andJ(fpriv → b|D ′) =−(A+E).
Let λ1(M) andλ2(M) denote the largest and second largest eigenvalues of a matrixM. As E

has rank at most 2, from Lemma 10,

|det(J(fpriv → b|D ′))|
|det(J(fpriv → b|D))| =

|det(A+E)|
|detA|

= |1+λ1(A
−1E)+λ2(A

−1E)+λ1(A
−1E)λ2(A

−1E)|.

For a 1-strongly convex functionN, the Hessian∇2N(fpriv) has eigenvalues greater than 1 (Boyd and
Vandenberghe, 2004). Since we have assumedℓ is doubly differentiable and convex, any eigenvalue
of A is therefore at leastnΛ+n∆; therefore, forj = 1,2, |λ j(A−1E)| ≤ |λ j (E)|

n(Λ+∆) . Applying the triangle
inequality to the trace norm:

|λ1(E)|+ |λ2(E)| ≤ |y2
nℓ

′′(ynfT
privxn)| · ‖xn‖+ |− (y′n)

2ℓ′′(y′nfT
privx′n)| ·

∥

∥x′n
∥

∥ .

Then upper bounds on|yi |, ||xi ||, and|ℓ′′(z)| yield

|λ1(E)|+ |λ2(E)| ≤ 2c.

Therefore,|λ1(E)| · |λ2(E)| ≤ c2, and

|det(A+E)|
|det(A)| ≤ 1+

2c
n(Λ+∆)

+
c2

n2(Λ+∆)2 =

(

1+
c

n(Λ+∆)

)2

.

We now consider two cases. In the first case,∆ = 0, and by definition, in that case, 1+ 2c
nΛ + c2

n2Λ2 ≤
eεp−ε′p. In the second case,∆ > 0, and in this case, by definition of∆, (1+ c

n(Λ+∆))
2 = eεp/2 = eεp−ε′p.

Next, we bound the ratio of the densities ofb. We observe that as|ℓ′(z)| ≤ 1, for anyz and
|yi |, ||xi|| ≤ 1, for data setsD andD ′ which differ by one value,

b′−b = ynℓ
′(ynfT

privxn)xn−y′nℓ
′(ynfT

privx′n)x′n.
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This implies that:

‖b‖−
∥

∥b′∥
∥≤

∥

∥b−b′∥
∥≤ 2.

We can write:

µ(b|D)

µ(b′|D ′)
=

||b||d−1e−ε′p||b||/2 · 1
surf(||b||)

||b′||d−1e−ε′p||b′||/2 · 1
surf(||b′||)

≤ eε′p(||b||−||b′||)/2 ≤ eε′p,

where surf(x) denotes the surface area of the sphere ind dimensions with radiusx. Here the last
step follows from the fact that surf(x) = surf(1)xd−1, where surf(1) is the surface area of the unit
sphere inRd.

Finally, we are ready to bound the ratio of densities:

g(fpriv|D)

g(fpriv|D ′)
=

µ(b|D)

µ(b′|D ′)
· |det(J(fpriv → b|D ′))|
|det(J(fpriv → b′|D))|

=
µ(b|D)

µ(b′|D ′)
· |det(A+E)|

|detA|
≤ eε′p ·eεp−ε′p

≤ eεp.

Thus, Algorithm 2 satisfies Definition 2.

Lemma 10 If A is full rank, and if E has rank at most2, then,

det(A+E)−det(A)
det(A)

= λ1(A
−1E)+λ2(A

−1E)+λ1(A
−1E)λ2(A

−1E),

whereλ j(Z) is the j-th eigenvalue of matrix Z.

Proof Note thatE has rank at most 2, soA−1E also has rank at most 2. Using the fact that
λi(I +A−1E) = 1+λi(A−1E),

det(A+E)−det(A)
detA

= det(I +A−1E)−1

= (1+λ1(A
−1E))(1+λ2(A

−1E))−1

= λ1(A
−1E)+λ2(A

−1E)+λ1(A
−1E)λ2(A

−1E).

3.4 Application to Classification

In this section, we show how to use our results to provide privacy-preserving versions of logistic
regression and support vector machines.
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3.4.1 LOGISTIC REGRESSION

One popular ERM classification algorithm is regularized logistic regression.In this case,N(f) =
1
2||f||2, and the loss function isℓLR(z) = log(1+e−z). Taking derivatives and double derivatives,

ℓ′LR(z) =
−1

(1+ez)
,

ℓ′′LR(z) =
1

(1+e−z)(1+ez)
.

Note thatℓLR is continuous, differentiable and doubly differentiable, withc≤ 1
4. Therefore, we can

plug in logistic loss directly to Theorems 6 and 9 to get the following result.

Corollary 11 The output of Algorithm 1 with N(f) = 1
2||f||2, ℓ= ℓLR is anεp-differentially private

approximation to logistic regression. The output of Algorithm 2 with N(f) = 1
2||f||2, c = 1

4, and
ℓ= ℓLR, is anεp-differentially private approximation to logistic regression.

We quantify how well the outputs of Algorithms 1 and 2 approximate (non-private) logistic
regression in Section 4.

3.4.2 SUPPORTVECTORMACHINES

Another very commonly used classifier isL2-regularized support vector machines. In this case,
again,N(f) = 1

2||f||2, and

ℓSVM(z) = max(0,1−z).

Notice that this loss function is continuous, but not differentiable, and thusit does not satisfy con-
ditions in Theorems 6 and 9.

There are two alternative solutions to this. First, we can approximateℓSVM by a different loss
function, which is doubly differentiable, as follows (see also Chapelle, 2007):

ℓs(z) =











0 if z> 1+h

− (1−z)4

16h3 + 3(1−z)2

8h + 1−z
2 + 3h

16 if |1−z| ≤ h
1−z if z< 1−h.

As h→ 0, this loss approaches the hinge loss. Taking derivatives, we observe that:

ℓ′s(z) =











0 if z> 1+h
(1−z)3

4h3 − 3(1−z)
4h − 1

2 if |1−z| ≤ h
−1 if z< 1−h.

Moreover,

ℓ′′s(z) =











0 if z> 1+h

−3(1−z)2

4h3 + 3
4h if |1−z| ≤ h

0 if z< 1−h.

Observe that this implies that|ℓ′′s(z)| ≤ 3
4h for all h andz. Moreover,ℓs is convex, asℓ′′s(z)≥ 0 for all

z. Therefore,ℓs can be used in Theorems 6 and 9, which gives us privacy-preservingapproximations
to regularized support vector machines.
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Corollary 12 The output of Algorithm 1 with N(f)= 1
2||f||2, andℓ= ℓs is anεp-differentially private

approximation to support vector machines. The output of Algorithm 2 with N(f) = 1
2||f||2, c= 3

4h,
andℓ= ℓs is anεp-differentially private approximation to support vector machines.

The second solution is to use Huber Loss, as suggested by Chapelle (2007), which is defined as
follows:

ℓHuber(z) =







0 if z> 1+h
1
4h(1+h−z)2 if |1−z| ≤ h
1−z if z< 1−h.

(7)

Observe that Huber loss is convex and differentiable, and piecewise doubly-differentiable, with
c = 1

2h. However, it is not globally doubly differentiable, and hence the Jacobian in the proof of
Theorem 9 is undefined for certain values off. However, we can show that in this case, Algorithm
2, when run withc= 1

2h satisfies Definition 3.
Let G denote the map fromfpriv to b in (6) underB =D, andH denote the map underB =D ′.

By definition, the probabilityP(fpriv ∈ S | B =D) = Pb(b ∈ G(S)).

Corollary 13 Let fpriv be the output of Algorithm 2 withℓ= ℓHuber, c= 1
2h, and N(f) = 1

2||f||22. For
any setS of possible values offpriv, and any pair of data setsD,D ′ which differ in the private value
of one person(xn,yn),

e−εpP(S | B =D ′)≤ P(S | B =D)≤ eεpP(S | B =D ′).

Proof Consider the eventfpriv ∈ S . Let T = G(S) andT ′ = H(S). BecauseG is a bijection, we
have

P(fpriv ∈ S | B =D) = Pb(b ∈ T | B =D),

and a similar expression whenB =D ′.
Now note thatℓ′Huber(z) is only non-differentiable for a finite number of values ofz. Let Z be

the set of these values ofz.

C = {f : yfTx = z∈ Z, (x,y) ∈D ∪D ′}.

Pick a tuple(z,(x,y)) ∈ Z × (D ∪D ′). The set off such thatyfTx = z is a hyperplane inRd.
Since∇N(f) = f/2 andℓ′ is piecewise linear, from(6) we see that the set of correspondingb’s is
also piecewise linear, and hence has Lebesgue measure 0. Since the measure corresponding tob
is absolutely continuous with respect to the Lebesgue measure, this hyperplane has probability 0
underb as well. SinceC is a finite union of such hyperplanes, we haveP(b ∈ G(C )) = 0.

Thus we havePb(T |B =D)=Pb(G(S \C ) |B =D), and similarly forD ′. From the definition
of G andH, for f ∈ S \C ,

H(f) = G(f)+ynℓ
′(ynfTxn)xn−y′nℓ

′(y′nfTx′n)x
′
n.

sincef /∈ C , this mapping shows that ifPb(G(S \C ) | B = D) = 0 then we must havePb(H(S \
C ) | B =D) = 0. Thus the result holds for sets of measure 0. IfS \C has positive measure we can
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calculate the ratio of the probabilities forfpriv for which the loss is twice-differentiable. For such
fpriv the Jacobian is also defined, and we can use a method similar to Theorem 9 to prove the result.

Remark: Because the privacy proof for Algorithm 1 does not require the analyticproperties of
2, we can also use Huber loss in Algorithm 1 to get anεg-differentially private approximation to the
SVM. We quantify how well the outputs of Algorithms 1 and 2 approximate private support vector
machines in Section 4. These approximations to the hinge loss are necessarybecause of the analytic
requirements of Theorems 6 and 9 on the loss function. Because the requirements of Theorem 9 are
stricter, it may be possible to use an approximate loss in Algorithm 1 that would not be admissible
in Algorithm 2.

4. Generalization Performance

In this section, we provide guarantees on the performance of privacy-preserving ERM algorithms
in Section 3. We provide these bounds forL2-regularization. To quantify this performance, we will
assume that then entries in the data setD are drawn i.i.d. according to a fixed distributionP(x,y).
We measure the performance of these algorithms by the number of samplesn required to acheive
errorL∗+ εg, whereL∗ is the loss of a reference ERM predictorf0. This resulting bound onεg will
depend on the norm‖f0‖ of this predictor. By choosing an upper boundν on the norm, we can
interpret the result as saying that the privacy-preserving classifier will have errorεg more than that
of any predictor with‖f0‖ ≤ ν.

Given a distributionP the expected lossL(f) for a classifierf is

L(f) = E(x,y)∼P

[

ℓ(fTx,y)
]

.

The sample complexity for generalization errorεg against a classifierf0 is number of samplesn
required to achieve errorL(f0)+ εg under any data distributionP. We would like the sample com-
plexity to be low.

For a fixedP we define the following function, which will be useful in our analysis:

J̄(f) = L(f)+
Λ
2
‖f‖2 .

The functionJ̄(f) is the expectation (overP) of the non-privateL2-regularized ERM objective eval-
uated atf.

For non-private ERM, Shalev-Shwartz and Srebro (2008) show thatfor a given f0 with loss
L(f0) = L∗, if the number of data points satisfies

n>C
||f0||2 log(1

δ)

ε2
g

for some constantC, then the excess loss of theL2-regularized SVM solutionfsvmsatisfiesL(fsvm)≤
L(f0)+ εg. This order growth will hold for our results as well. It also serves as a reference against
which we can compare the additional burden on the sample complexity imposed bythe privacy
constraints.

For most learning problems, we require the generalization errorεg < 1. Moreover, it is also typ-
ically the case that for more difficult learning problems,||f0|| is higher. For example, for regularized
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SVM, 1
||f0|| is the margin of classification, and as a result,||f0|| is higher for learning problems with

smaller margin. From the bounds provided in this section, we note that the dominating term in the
sample requirement for objective perturbation has a better dependence on ||f0|| as well as1

εg
; as a

result, for more difficult learning problems, we expect objective perturbation to perform better than
output perturbation.

4.1 Output Perturbation

First, we provide performance guarantees for Algorithm 1, by providinga bound on the number of
samples required for Algorithm 1 to produce a classifier with low error.

Definition 14 A function g(z) :R→R is c-Lipschitz if for all pairs(z1,z2) we have|g(z1)−g(z2)| ≤
c|z1−z2|.

Recall that if a functiong(z) is differentiable, with|g′(z)| ≤ r for all z, theng(z) is alsor-
Lipschitz.

Theorem 15 Let N(f) = 1
2||f||2, and letf0 be a classifier such that L(f0) = L∗, and letδ > 0. If ℓ is

differentiable and continuous with|ℓ′(z)| ≤ 1, the derivativeℓ′ is c-Lipschitz, the dataD is drawn
i.i.d. according to P, then there exists a constant C such that if the number oftraining samples
satisfies

n>Cmax

(

||f0||2 log(1
δ)

ε2
g

,
d log(d

δ )||f0||
εgεp

,
d log(d

δ )c
1/2||f0||2

ε3/2
g εp

)

, (8)

where d is the dimension of the data space, then the outputfpriv of Algorithm 1 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−2δ.

Proof Let

frtr = argmin
f

J̄(f),

f∗ = argmin
f

J(f,D),

andfpriv denote the output of Algorithm 1. Using the analysis method of Shalev-Shwartz and Srebro
(2008) shows

L(fpriv) = L(f0)+(J̄(fpriv)− J̄(frtr))+(J̄(frtr)− J̄(f0))+
Λ
2
||f0||2−

Λ
2
||fpriv||2. (9)

We will bound the terms on the right-hand side of (9).
For a regularizerN(f) = 1

2||f||2 the Hessian satisfies||∇2N(f)||2 ≤ 1 . Therefore, from Lemma
16, with probability 1−δ over the privacy mechanism,

J(fpriv,D)−J(f∗,D)≤ 8d2 log2(d/δ)(c+Λ)
Λ2n2ε2

p
.
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Furthermore, the results of Sridharan et al. (2008) show that with probability 1 −δ over the choice
of the data distribution,

J̄(fpriv)− J̄(frtr)≤ 2(J(fpriv,D)−J(f∗,D))+O

(

log(1/δ)
Λn

)

.

The constant in the last term depends on the derivative of the loss and thebound on the data points,
which by assumption are bounded. Combining the preceeding two statements, with probability
1− 2δ over the noise in the privacy mechanism and the data distribution, the second term in the
right-hand-side of (9) is at most:

J̄(fpriv)− J̄(frtr)≤
16d2 log2(d/δ)(c+Λ)

Λ2n2ε2
p

+O

(

log(1/δ)
Λn

)

. (10)

By definition of frtr, the difference(J̄(frtr)− J̄(f0))≤ 0. SettingΛ =
εg

||f0||2 in (9) and using (10), we
obtain

L(fpriv)≤ L(f0)+
16||f0||4d2 log2(d/δ)(c+ εg/||f0||2)

n2ε2
gε2

p
+O

(

||f0||2
log(1/δ)

nεg

)

+
εg

2
.

Solving forn to make the total excess error equal toεg yields (8).

Lemma 16 Suppose N(·) is doubly differentiable with||∇2N(f)||2 ≤ η for all f, and suppose thatℓ
is differentiable and has continuous and c-Lipschitz derivatives. Given training dataD, let f∗ be a
classifier that minimizes J(f,D) and letfpriv be the classifier output by Algorithm 1. Then

Pb

(

J(fpriv,D)≤ J(f∗,D)+
2d2(c+Λη) log2(d/δ)

Λ2n2ε2
p

)

≥ 1−δ,

where the probability is taken over the randomness in the noiseb of Algorithm 1.

Note that whenℓ is doubly differentiable,c is an upper bound on the double derivative ofℓ, and
is the same as the constantc in Theorem 9.
Proof Let D = {(x1,y1), . . . ,(xn,yn)}, and recall that||xi || ≤ 1, and|yi | ≤ 1. As N(·) andℓ are
differentiable, we use the Mean Value Theorem to show that for somet between 0 and 1,

J(fpriv,D)−J(f∗,D) = (fpriv − f∗)T∇J(tf∗+(1− t)fpriv)

≤ ||fpriv − f∗|| · ||∇J(tf∗+(1− t)fpriv)||, (11)

where the second step follows by an application of the Cauchy-Schwartz inequality. Recall that

∇J(f,D) = Λ∇N(f)+
1
n ∑

i

yiℓ
′(yi fTxi)xi .

Moreover, recall that∇J(f∗,D) = 0, from the optimality off∗. Therefore,

∇J(tf∗+(1− t)fpriv,D) = ∇J(f∗,D)−Λ(∇N(f∗)−∇N(tf∗+(1− t)fpriv))

− 1
n ∑

i

yi
(

ℓ′(yi(f∗)Txi)− ℓ′(yi(tf∗+(1− t)fpriv)
Txi)

)

xi . (12)
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Now, from the Lipschitz condition onℓ, for eachi we can upper bound each term in the summation
above:

∥

∥yi
(

ℓ′(yi(f∗)Txi)− ℓ′(yi(tf∗+(1− t)fpriv)
Txi)

)

xi
∥

∥

≤ |yi | · ||xi|| · |ℓ′(yi(f∗)Txi)− ℓ′(yi(tf∗+(1− t)fpriv)
Txi)|

≤ |yi | · ||xi|| ·c· |yi(1− t)(f∗− fpriv)
Txi |

≤ c(1− t)|yi |2 · ||xi ||2 · ||f∗− fpriv||
≤ c(1− t)||f∗− fpriv||. (13)

The third step follows becauseℓ′ is c-Lipschitz and the last step follows from the bounds on|yi | and
||xi ||. BecauseN is doubly differentiable, we can apply the Mean Value Theorem again to conclude
that

||∇N(tf∗+(1− t)fpriv)−∇N(f∗)|| ≤ (1− t)||fpriv − f∗|| · ||∇2N(f′′)||2 (14)

for somef′′ ∈ R
d.

As 0≤ t ≤ 1, we can combine (12), (13), and (14) to obtain

∥

∥∇J(tf∗+(1− t)fpriv,D)
∥

∥≤
∥

∥Λ(∇N(f∗)−∇N(tf∗+(1− t)fpriv))
∥

∥

+

∥

∥

∥

∥

∥

1
n ∑

i

yi(ℓ
′(yi(f∗)Txi)− ℓ′(yi(tf∗+(1− t)fpriv)

Txi))xi

∥

∥

∥

∥

∥

≤ (1− t)
∥

∥fpriv − f∗
∥

∥ ·
(

Λη+
1
n
·n·c

)

≤
∥

∥fpriv − f∗
∥

∥(Λη+c). (15)

From the definition of Algorithm 1,fpriv− f∗ = b, whereb is the noise vector. Now we can apply
Lemma 17 to||fpriv − f∗||, with parametersk= d, andθ = 2

Λnεp
. From Lemma 17, with probability

1−δ, ||fpriv − f∗|| ≤ 2d log( d
δ )

Λnεp
. The Lemma follows by combining this with Equations 15 and 11.

Lemma 17 Let X be a random variable drawn from the distributionΓ(k,θ), where k is an integer.
Then,

P

(

X < kθ log

(

k
δ

))

≥ 1−δ.

Proof Sincek is an integer, we can decomposeX distributed according toΓ(k,θ) as a summation

X = X1+ . . .+Xk,
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whereX1,X2, . . . ,Xk are independent exponential random variables with meanθ. For eachi we have
P(Xi ≥ θ log(k/δ)) = δ/k. Now,

P(X < kθ log(k/δ))≥ P(Xi < θ log(k/δ) i = 1,2, . . . ,k)

= (1−δ/k)k

≥ 1−δ.

4.2 Objective Perturbation

We now establish performance bounds on Algorithm 2. The bound can be summarized as follows.

Theorem 18 Let N(f) = 1
2||f||2, and letf0 be a classifier with expected loss L(f0) = L∗. Let ℓ be

convex, doubly differentiable, and let its derivatives satisfy|ℓ′(z)| ≤ 1 and|ℓ′′(z)| ≤ c for all z. Then
there exists a constant C such that forδ> 0, if the n training samples inD are drawn i.i.d. according
to P, and if

n>Cmax

(

||f0||2 log(1/δ)
ε2

g
,
c||f0||2
εgεp

,
d log(d

δ )||f0||
εgεp

)

,

then the outputfpriv of Algorithm 2 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−2δ.

Proof Let

frtr = argmin
f

J̄(f),

f∗ = argmin
f

J(f,D),

andfpriv denote the output of Algorithm 1. As in Theorem 15, the analysis of Shalev-Shwartz and
Srebro (2008) shows

L(fpriv) = L(f0)+(J̄(fpriv)− J̄(frtr))+(J̄(frtr)− J̄(f0))+
Λ
2
||f0||2−

Λ
2
||fpriv||2. (16)

We will bound each of the terms on the right-hand-side.

If n> c||f0||2
εgεp

andΛ >
εg

4||f0||2 , thennΛ > c
4εp

, so from the definition ofε′p in Algorithm 2,

ε′p = εp−2log
(

1+
c

nΛ

)

= εp−2log
(

1+
εp

4

)

≥ εp−
εp

2
,

where the last step follows because log(1+x)≤ x for x∈ [0,1]. Note that for these values ofΛ we
haveε′p > 0.

1088



DIFFERENTIALLY PRIVATE ERM

Therefore, we can apply Lemma 19 to conclude that with probability at least 1− δ over the
privacy mechanism,

J(fpriv,D)−J(f∗,D)≤ 4d2 log2(d/δ)
Λn2ε2

p
.

From Sridharan et al. (2008),

J̄(fpriv)− J̄(frtr)≤ 2(J(fpriv,D)−J(f∗,D))+O

(

log(1/δ)
Λn

)

≤ 8d2 log2(d/δ)
Λn2ε2

p
+O

(

log(1/δ)
Λn

)

.

By definition of f∗, we haveJ̄(frtr)− J̄(f0) ≤ 0. If Λ is set to be εg

||f0||2 , then, the fourth quantity

in Equation 16 is at mostεg

2 . The theorem follows by solving forn to make the total excess error at
mostεg.

The following lemma is analogous to Lemma 16, and it establishes a bound on the distance
between the output of Algorithm 2, and non-private regularized ERM. Wenote that this bound
holds when Algorithm 2 hasε′p > 0, that is, when∆ = 0. Ensuring that∆ = 0 requires an additional
condition onn, which is stated in Theorem 18.

Lemma 19 Let ε′p > 0. Let f∗ = argminJ(f,D), and letfpriv be the classifier output by Algorithm
2. If N(·) is 1-strongly convex and globally differentiable, and ifℓ is convex and differentiable at all
points, with|ℓ′(z)| ≤ 1 for all z, then

Pb

(

J(fpriv,D)≤ J(f∗,D)+
4d2 log2(d/δ)

Λn2ε2
p

)

≥ 1−δ,

where the probability is taken over the randomness in the noiseb of Algorithm 2.

Proof By the assumptionε′p > 0, the classifierfpriv minimizes the objective functionJ(f,D)+ 1
nbT f,

and therefore

J(fpriv,D)≤ J(f∗,D)+
1
n

bT(f∗− fpriv).

First, we try to bound||f∗− fpriv||. Recall thatΛN(·) is Λ-strongly convex and globally differen-
tiable, andℓ is convex and differentiable. We can therefore apply Lemma 7 withG(f) = J(f,D) and
g(f) = 1

nbT f to obtain the bound

||f∗− fpriv|| ≤
1
Λ

∥

∥

∥

∥

∇(
1
n

bT f)

∥

∥

∥

∥

≤ ||b||
nΛ

.

Therefore by the Cauchy-Schwartz inequality,

J(fpriv,D)−J(f∗,D)≤ ||b||2
n2Λ

.

Since||b|| is drawn from aΓ(d, 2
εp
) distribution, from Lemma 17, with probability 1− δ, ||b|| ≤

2d log(d/δ)
εp

. The Lemma follows by plugging this in to the previous equation.
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4.3 Applications

In this section, we examine the sample requirement of privacy-preserving regularized logistic re-
gression and support vector machines. Recall that in both these cases,N(f) = 1

2||f||2.

Corollary 20 (Logistic Regression) Let training dataD be generated i.i.d. according to a distri-
bution P and letf0 be a classifier with expected loss L(f0) = L∗. Let the loss functionℓ= ℓLR defined
in Section 3.4.1. Then the following two statements hold:

1. There exists a C1 such that if

n>C1max

(

||f0||2 log(1
δ)

ε2
g

,
d log(d

δ )||f0||
εgεp

,
d log(d

δ )||f0||2

ε3/2
g εp

)

,

then the outputfpriv of Algorithm 1 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−δ.

2. There exists a C2 such that if

n>Cmax

(

||f0||2 log(1/δ)
ε2

g
,
||f0||2
εgεp

,
d log(d

δ )||f0||
εgεp

)

,

then the outputfpriv of Algorithm 2 with c= 1
4 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−δ.

Proof SinceℓLR is convex and doubly differentiable for anyz1, z2,

ℓ′LR(z1)− ℓ′LR(z2)≤ ℓ′′LR(z
∗)(z1−z2)

for somez∗ ∈ [z1,z2]. Moreover,|ℓ′′LR(z
∗)| ≤ c= 1

4, soℓ′ is 1
4-Lipschitz. The corollary now follows

from Theorems 15 and 18.

For SVMs we state results withℓ= ℓHuber, but a similar bound can be shown forℓs as well.

Corollary 21 (Huber Support Vector Machines) Let training dataD be generated i.i.d. accord-
ing to a distribution P and letf0 be a classifier with expected loss L(f0) = L∗. Let the loss function
ℓ= ℓHuber defined in(7). Then the following two statements hold:

1. There exists a C1 such that if

n>C1max

(

||f0||2 log(1
δ)

ε2
g

,
d log(d

δ )||f0||
εgεp

,
d log(d

δ )||f0||2

h1/2ε3/2
g εp

)

,

then the outputfpriv of Algorithm 1 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−δ.
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2. There exists a C2 such that if

n>Cmax

(

||f0||2 log(1/δ)
ε2

g
,
||f0||2
hεgεp

,
d log(d

δ )||f0||
εgεp

)

,

then the outputfpriv of Algorithm 2 with c= 1
4 satisfies

P
(

L(fpriv)≤ L∗+ εg
)

≥ 1−δ.

Proof The Huber loss is convex and differentiable with continuous derivatives. Moreover, since the
derivative of the Huber loss is piecewise linear with slope 0 or at most1

2h, for anyz1, z2,

|ℓ′Huber(z1)− ℓ′Huber(z2)| ≤
1
2h

|z1−z2|,

soℓ′Huber is
1
2h-Lipschitz. The first part of the corollary follows from Theorem 15.

For the second part of the corollary, we observe that from Corollary 13, we do not needℓ to
be globally double differentiable, and the bound on|ℓ′′(z)| in Theorem 18 is only needed to en-
sure thatε′p > 0; sinceℓHuber is double differentiable except in a set of Lebesgue measure 0, with
|ℓ′′Huber(z)| ≤ 1

2h, the corollary follows by an application of Theorem 18.

5. Kernel Methods

A powerful methodology in learning problems is the “kernel trick,” which allows the efficient con-
struction of a predictorf that lies in a reproducing kernel Hilbert space (RKHS)H associated to
a positive definite kernel functionk(·, ·). The representer theorem (Kimeldorf and Wahba, 1970)
shows that the regularized empirical risk in (1) is minimized by a functionf(x) that is given by a
linear combination of kernel functions centered at the data points:

f∗(x) =
n

∑
i=1

aik(x(i),x). (17)

This elegant result is important for both theoretical and computational reasons. Computationally,
one releases the valuesai corresponding to thef that minimizes the empirical risk, along with the
data pointsx(i); the user classifies a newx by evaluating the function in (17).

A crucial difficulty in terms of privacy is that this directly releases the private valuesx(i) of
some individuals in the training set. Thus, even if the classifier is computed in a privacy-preserving
way, any classifier released by this process requires revealing the data. We provide an algorithm
that avoids this problem, using an approximation method (Rahimi and Recht, 2007, 2008b) to ap-
proximate the kernel function using random projections.

5.1 Mathematical Preliminaries

Our approach works for kernel functions which are translation invariant, sok(x,x′) = k(x− x′).
The key idea in the random projection method is from Bochner’s Theorem, which states that a
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continuous translation invariant kernel is positive definite if and only if it is the Fourier transform of
a nonnegative measure. This means that the Fourier transformK(θ) of translation-invariant kernel
function k(t) can be normalized so that̄K(θ) = K(θ)/‖K(θ)‖1 is a probability measure on the
transform spaceΘ. We will assumeK̄(θ) is uniformly bounded overθ.

In this representation

k(x,x′) =
∫

Θ
φ(x;θ)φ(x′;θ)K̄(θ)dθ, (18)

where we will assume the feature functionsφ(x;θ) are bounded:

|φ(x;θ)| ≤ ζ ∀x ∈ X , ∀θ ∈ Θ.

A function f ∈H can be written as

f(x) =
∫

Θ
a(θ)φ(x;θ)K̄(θ)dθ.

To prove our generalization bounds we must show that bounded classifiers f induce bounded func-
tionsa(θ). Writing the evaluation functional as an inner product withk(x,x′) and (18) shows

f(x) =
∫

Θ

(∫
X

f(x′)φ(x′;θ)dx′
)

φ(x;θ)K̄(θ)dθ.

Thus we have

a(θ) =
∫
X

f(x′)φ(x′;θ)dx′

|a(θ)| ≤ Vol(X ) ·ζ · ‖f‖∞ .

This shows thata(θ) is bounded uniformly overΘ when f(x) is bounded uniformly overX . The

volume of the unit ball is Vol(X ) = πd/2

Γ( d
2+1)

(see Ball, 1997 for more details). For larged this is

(
√

2πe
d )d by Stirling’s formula. Furthermore, we have

‖f‖2
H =

∫
Θ

a(θ)2K̄(θ)dθ.

5.2 A Reduction to the Linear Case

We now describe how to apply Algorithms 1 and 2 for classification with kernels, by transforming
to linear classification. Given{θ j}, let R : X → R

D be the map that sendsx(i) to a vectorv(i) ∈
R

D wherev j(i) = φ(x(i);θ j) for j ∈ [D]. We then use Algorithm 1 or Algorithm 2 to compute a
privacy-preserving linear classifierf in R

D. The algorithm releasesRandf̃. The overall classifier is
fpriv(x) = f̃(R(x)).

As an example, consider the Gaussian kernel

k(x,x′) = exp
(

−γ
∥

∥x−x′
∥

∥

2
2

)

.

The Fourier transform of a Gaussian is a Gaussian, so we can sampleθ j = (ω,ψ) according to the
distribution Uniform[−π,π]×N (0,2γId) and computev j = cos(ωTx+ψ). The random phase is
used to produce a real-valued mapping. The paper of Rahimi and Recht (2008a) has more examples
of transforms for other kernel functions.
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Algorithm 3 Private ERM for nonlinear kernels

Inputs: Data{(xi ,yi) : i ∈ [n]}, positive definite kernel functionk(·, ·), sampling functionK̄(θ),
parametersεp, Λ, D
Outputs: Predictorfpriv and pre-filter{θ j : j ∈ [D]}.
Draw{θ j : j = 1,2, . . . ,D} iid according toK̄(θ).
Setv(i) =

√

2/D[φ(x(i);θ1) · · ·φ(x(i);θD)]
T for eachi.

Run Algorithm 1 or Algorithm 2 with data{(v(i),y(i))} and parametersεp, Λ.

5.3 Privacy Guarantees

Because the workhorse of Algorithm 3 is a differentially-private versionof ERM for linear classi-
fiers (either Algorithm 1 or Algorithm 2), and the points{θ j : j ∈ [D]} are independent of the data,
the privacy guarantees for Algorithm 3 follow trivially from Theorems 6 and 9.

Theorem 22 Given data{(x(i),y(i)) : i = 1,2, . . . ,n} with (x(i),y(i)) and‖x(i)‖ ≤ 1, the outputs
(fpriv,{θ j : j ∈ [D]}) of Algorithm 3 guaranteeεp-differential privacy.

The proof trivially follows from a combination of Theorems 6, 9, and the fact that theθ j ’s are
drawn independently of the input data set.

5.4 Generalization Performance

We now turn to generalization bounds for Algorithm 3. We will prove results using objective per-
turbation (Algorithm 2) in Algorithm 3, but analogous results for output perturbation (Algorithm 1)
are simple to prove. Our comparisons will be against arbitrary predictorsf0 whose norm is bounded
in some sense. That is, given anf0 with some properties, we will choose regularization parameter
Λ, dimensionD, and number of samplesn so that the predictorfpriv has expected loss close to that
of f0.

In this section we will assumeN(f) = 1
2 ‖f‖2 so thatN(·) is 1-strongly convex, and that the loss

functionℓ is convex, differentiable and|ℓ′(z)| ≤ 1 for all z.
Our first generalization result is the simplest, since it assumes a strong condition that gives

easy guarantees on the projections. We would like the predictor producedby Algorithm 3 to be
competitive against anf0 such that

f0(x) =
∫

Θ
a0(θ)φ(x;θ)K̄(θ)dθ, (19)

and |a0(θ)| ≤ C (see Rahimi and Recht, 2008b). Our first result provides the technicalbuilding
block for our other generalization results. The proof makes use of ideasfrom Rahimi and Recht
(2008b) and techniques from Sridharan et al. (2008); Shalev-Shwartz and Srebro (2008).

Lemma 23 Let f0 be a predictor such that|a0(θ)| ≤ C, for all θ, where a0(θ) is given by (19),
and suppose L(f0) = L∗. Moreover, suppose thatℓ′(·) is c-Lipschitz. If the dataD is drawn i.i.d.
according to P, then there exists a constant C0 such that if

n>C0 ·max

(

C2
√

log(1/δ)
εpε2

g
· log

C log(1/δ)
εgδ

,
cεg

εp log(1/δ)

)

, (20)
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thenΛ and D can be chosen such that the outputfpriv of Algorithm 3 using Algorithm 2 satisfies

P
(

L(fpriv)−L∗ ≤ εg
)

≥ 1−4δ.

Proof Since|a0(θ)| ≤C and theK̄(θ) is bounded, we have (Rahimi and Recht, 2008b, Theorem 1)
that with probability 1−2δ there exists anfp ∈ R

D such that

L(fp)≤ L(f0)+O

(

(

1√
n
+

1√
D

)

C

√

log
1
δ

)

, (21)

We will chooseD to make this loss small. Furthermore,fp is guaranteed to have‖fp‖∞ ≤C/D, so

‖fp‖2
2 ≤

C2

D
. (22)

Now given such anfp we must show thatfpriv will have true risk close to that offp as long as
there are enough data points. This can be shown using the techniques in Shalev-Shwartz and Srebro
(2008). Let

J̄(f) = L(f)+
Λ
2
‖f‖2

2 ,

and let

frtr = argmin
f∈RD

J̄(f)

minimize the regularized true risk. Then

J̄(fpriv) = J̄(fp)+(J̄(fpriv)− J̄(frtr))+(J̄(frtr)− J̄(fp)).

Now, sinceJ̄(·) is minimized byfrtr, the last term is negative and we can disregard it. Then we have

L(fpriv)−L(fp)≤ (J̄(fpriv)− J̄(frtr))+
Λ
2
‖fp‖2

2−
Λ
2

∥

∥fpriv
∥

∥

2
2 . (23)

From Lemma 19, with probability at least 1−δ over the noiseb,

J(fpriv)−J

(

argmin
f

J(f)
)

≤ 4D2 log2(D/δ)
Λn2ε2

p
. (24)

Now we can bound the term(J̄(fpriv)− J̄(frtr)) by twice the gap in the regularized empirical risk
difference (24) plus an additional term (Sridharan et al., 2008, Corollary 2). That is, with probability
1−δ:

J̄(fpriv)− J̄(frtr)≤ 2(J(fpriv)−J(frtr))+O

(

log(1/δ)
Λn

)

. (25)

If we setn> c
4εpΛ , thenε′p > 0, and we can plug Lemma 19 into (25) to obtain:

J̄(fpriv)− J̄(frtr)≤
8D2 log2(D/δ)

Λn2ε2
p

+O

(

log(1/δ)
Λn

)

. (26)
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Plugging (26) into (23), discarding the negative term involving
∥

∥fpriv
∥

∥

2
2 and settingΛ = εg/‖fp‖2

gives

L(fpriv)−L(fp)≤
8‖fp‖2

2D2 log2(D/δ)
n2ε2

pεg
+O

(

‖fp‖2
2 log 1

δ
nεg

)

+
εg

2
. (27)

Now we have, using (21) and (27), that with probability 1−4δ:

L(fpriv)−L(f0)≤ (L(fpriv)−L(fp))+(L(fp)−L(f0))

≤ 8‖fp‖2
2D2 log2(D/δ)
n2ε2

pεg
+O

(

‖fp‖2
2 log(1/δ)
nεg

)

+
εg

2

+O

(

(

1√
n
+

1√
D

)

C

√

log
1
δ

)

,

Substituting (22), we have

L(fpriv)−L(f0)≤
8C2D log2(D/δ)

n2ε2
pεg

+O

(

C2 log(1/δ)
Dnεg

)

+
εg

2

+O

(

(

1√
n
+

1√
D

)

C

√

log
1
δ

)

.

To set the remaining parameters, we will chooseD < n so that

L(fpriv)−L(f0)≤
8C2D log2(D/δ)

n2ε2
pεg

+O

(

C2 log(1/δ)
Dnεg

)

+
εg

2
+O

(

C
√

log(1/δ)√
D

)

.

We setD = O(C2 log(1/δ)/ε2
g) to make the last termεg/6, and:

L(fpriv)−L(f0)≤ O





C4 log 1
δ log2 C2 log(1/δ)

ε2
gδ

n2ε2
pε3

g



+O
(εg

n

)

+
2εg

3
.

Settingn as in (20) proves the result. Moreover, settingn >
c‖fp‖2

4εpεg
= C0 · cεg

εp log(1/δ) ensures that
n> c

4Λεp
.

We can adapt the proof procedure to show that Algorithm 3 is competitive against any clas-
sifier f0 with a given bound on‖f0‖∞. It can be shown that for some constantζ that |a0(θ)| ≤
Vol(X )ζ‖f0‖∞. Then we can set this asC in (20) to obtain the following result.

Theorem 24 Let f0 be a classifier with norm‖f0‖∞, and let ℓ′(·) be c-Lipschitz. Then for any
distribution P, there exists a constant C0 such that if

n>C0 ·max

(

‖f0‖2
∞ ζ2(Vol(X ))2

√

log(1/δ)
εpε2

g
· log

‖f0‖∞ Vol(X )ζ log(1/δ)
εgδΓ(d

2 +1)
,

cεg

εp log(1/δ)

)

, (28)

thenΛ and D can be chosen such that the outputfpriv of Algorithm 3 with Algorithm 2 satisfies
P
(

L(fpriv)−L(f0)≤ εg
)

≥ 1−4δ.
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Proof SubstitutingC= Vol(X )ζ‖f0‖∞ in Lemma 23 we get the result.

We can also derive a generalization result with respect to classifiers with bounded‖f0‖H .

Theorem 25 Let f0 be a classifier with norm‖f0‖H , and letℓ′ be c-Lipschitz. Then for any distri-
bution P, there exists a constant C0 such that if,

n=C0 ·max

(

‖f0‖4
H ζ2(Vol(X ))2

√

log(1/δ)
εpε4

g
· log

‖f0‖H Vol(X )ζ log(1/δ)
εgδΓ(d

2 +1)
,

cεg

εp log(1/δ)

)

,

then Λ and D can be chosen such that the output of Algorithm 3 run with Algorithm 2 satisfies
P
(

L(fpriv)−L(f0)≤ εg
)

≥ 1−4δ.

Proof Let f0 be a classifier with norm‖f0‖2
H and expected lossL(f0). Now consider

frtr = argmin
f

L(f)+
Λrtr

2
‖f‖2

H ,

for someΛrtr to be specified later. We will first need a bound on‖frtr‖∞ in order to use our previous
sample complexity results. Sincefrtr is a minimizer, we can take the derivative of the regularized
expected loss and set it to 0 to get:

frtr(x′) =
−1
Λrtr

(

∂
∂f

∫
X
ℓ(f(x′),y)dP(x,y)

)

=
−1
Λrtr

(∫
X

(

∂
∂f(x′)

ℓ(f(x),y)
)

·
(

∂
∂f(x′)

f(x)
)

dP(x,y)
)

,

whereP(x,y) is a distribution on pairs(x,y). Now, using the representer theorem,∂∂f(x′) f(x) =
k(x′,x). Since the kernel function is bounded and the derivative of the loss is always upper bounded
by 1, so the integrand can be upper bounded by a constant. SinceP(x,y) is a probability distribution,
we have for allx′ that|frtr(x′)|= O(1/Λrtr). Now we setΛrtr = εg/‖f0‖2

H to get

‖frtr‖∞ = O

(

‖f0‖2
H

εg

)

.

We now have two cases to consider, depending on whetherL(f0)< L(frtr) or L(f0)> L(frtr).
Case 1: Suppose thatL(f0)< L(frtr). Then by the definition offrtr,

L(frtr)+
εg

2
· ‖frtr‖2

H

‖f0‖2
H

≤ L(f0)+
εg

2
.

Sinceεg

2 · ‖frtr‖2
H

‖f0‖2
H

≥ 0, we haveL(frtr)−L(f0)≤ εg

2 .

Case 2: Suppose thatL(f0) > L(frtr). Then the regularized classifier has better generalization
performance than the original, so we have trivially thatL(frtr)−L(f0)≤ εg

2 .
Therefore in both cases we have a bound on‖frtr‖∞ and a generalization gap ofεg/2. We can

now apply Theorem 24 to show that forn satisfying (28) we have

P
(

L(fpriv)−L(f0)≤ εg
)

≥ 1−4δ.
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6. Parameter Tuning

The privacy-preserving learning algorithms presented so far in this paper assume that the regular-
ization constantΛ is provided as an input, and is independent of the data. In actual applications of
ERM, Λ is selected based on the data itself. In this section, we address this issue: how to design an
ERM algorithm with end-to-end privacy, which selectsΛ based on the data itself.

Our solution is to present a privacy-preserving parameter tuning technique that is applicable
in general machine learning algorithms, beyond ERM. In practice, one typically tunes parame-
ters (such as the regularization parameterΛ) as follows: using data held out for validation, train
predictorsf(·;Λ) for multiple values ofΛ, and select the one which provides the best empirical per-
formance. However, even though the output of an algorithm preservesεp-differential privacy for a
fixedΛ (as is the case with Algorithms 1 and 2), by choosing aΛ based on empirical performance on
a validation set may violateεp-differential privacy guarantees. That is, if the procedure that picksΛ
is not private, then an adversary may use the released classifier to inferthe value ofΛ and therefore
something about the values in the database.

We suggest two ways of resolving this issue. First, if we have access to a smaller publicly
available data from the same distribution, then we can use this as a holdout setto tuneΛ. ThisΛ can
be subsequently used to train a classifier on the private data. Since the value of Λ does not depend
on the values in the private data set, this procedure will still preserve the privacy of individuals in
the private data.

If no such public data is available, then we need a differentially private tuning procedure. We
provide such a procedure below. The main idea is to train for different values ofΛ on separate
subsets of the training data set, so that the total training procedure still maintains εp-differential
privacy. We score each of these predictors on a validation set, and choose aΛ (and hencef(·;Λ))
using a randomized privacy-preserving comparison procedure (McSherry and Talwar, 2007). The
last step is needed to guaranteeεp-differential privacy for individuals in the validation set. This
final algorithm provides an end-to-end guarantee of differential privacy, and renders our privacy-
preserving ERM procedure complete. We observe that both these procedures can be used for tuning
multiple parameters as well.

6.1 Tuning Algorithm

Algorithm 4 Privacy-preserving parameter tuning
Inputs: DatabaseD, parameters{Λ1, . . . ,Λm}, εp.
Outputs: Parameterfpriv.

DivideD into m+1 equal portionsD1, . . . ,Dm+1, each of size|D|
m+1.

For eachi = 1,2, . . . ,m, apply a privacy-preserving learning algorithm (for example Algorithms
1, 2, or 3) onDi with parameterΛi andεp to get outputf i .
Evaluatezi , the number of mistakes made byf i onDm+1. Setfpriv = f i with probability

qi =
e−εpzi/2

∑m
i=1e−εpzi/2

.
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We note that the list of potentialΛ values input to this procedure should not be a function of
the private data set. It can be shown that the empirical error onDm+1 of the classifier output by
this procedure is close to the empirical error of the best classifier in the set{f1, . . . , fm} onDm+1,
provided|D| is high enough.

6.2 Privacy and Utility

Theorem 26 The output of the tuning procedure of Algorithm 4 isεp-differentially private.

Proof To show that Algorithm 4 preservesεp-differential privacy, we first consider an alternative
procedureM . Let M be the procedure that releases the values(f1, . . . , fm, i) where,f1, . . . , fm are
the intermediate values computed in the second step of Algorithm 4, andi is the index selected by
the exponential mechanism step. We first show thatM preservesεp-differential privacy.

Let D andD ′ be two data sets that differ in the value of one individual such thatD = D̄ ∪
{(x,y)}, andD ′ = D̄ ∪{(x′,y′)}.

Recall that the data setsD1, . . . ,Dm+1 are disjoint; moreover, the randomness in the privacy
mechanisms are independent. Therefore,

P(f1 ∈ S1, . . . , fm ∈ Sm, i = i∗|D)

=
∫
S1×...Sm

P(i = i∗|f1, . . . , fm,Dm+1)µ(f1, . . . , fm|D)df1 · · ·dfm

=
∫
S1×...Sm

P(i = i∗|f1, . . . , fm,Dm+1)
m

∏
j=1

µj(f j |D j)df1 · · ·dfm, (29)

whereµj(f) is the density atf induced by the classifier run with parameterΛ j , andµ(f1, . . . , fm) is
the joint density atf1, . . . , fm, induced byM . Now suppose that(x,y) ∈ D j , for j = m+1. Then,
Dk =D ′

k, andµj(f j |D j) = µj(f j |D ′
j), for k∈ [m]. Moreover, given any fixed setf1, . . . , fm,

P
(

i = i∗|D ′
m+1, f1, . . . , fm

)

≤ eεpP(i = i∗|Dm+1, f1, . . . , fm) . (30)

Instead, if(x,y) ∈D j , for j ∈ [m], then,Dk =D ′
k, for k∈ [m+1],k 6= j. Thus, for a fixedf1, . . . , fm,

P
(

i = i∗|D ′
m+1, f1, . . . , fm

)

= P(i = i∗|Dm+1, f1, . . . , fm) , (31)

µk(fk|Dk)≤ eεpµk(fk|D ′
k). (32)

The lemma follows by combining (29)-(32).
Now, an adversary who has access to the output ofM can compute the output of Algorithm

4 itself, without any further access to the data set. Therefore, by a simulatibilityargument, as in
Dwork et al. (2006b), Algorithm 4 also preservesεp-differential privacy.

In the theorem above, we assume that the individual algorithms for privacy-preserving classifi-
cation satisfy Definition 2; a similar theorem can also be shown when they satisfy a guarantee as in
Corollary 13.

The following theorem shows that the empirical error onDK+1 of the classifier output by the
tuning procedure is close to the empirical error of the best classifier in the set{f1, . . . , fK}. The proof
of this Theorem follows from Lemma 7 of McSherry and Talwar (2007).
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Theorem 27 Let zmin = mini zi , and let z be the number of mistakes made on Dm+1 by the classifier
output by our tuning procedure. Then, with probability1−δ,

z≤ zmin+
2log(m/δ)

εp
.

Proof In the notation of McSherry and Talwar (2007), thezmin = OPT, the base measureµ is
uniform on[m], andSt = {i : zi < zmin+ t}. Their Lemma 7 shows that

P
(

S̄2t
)

≤ exp(−εpt)
µ(St)

,

whereµ is the uniform measure on[m]. Using minµ(St) =
1
m to upper bound the right side and

setting it equal toδ we obtain

t =
1
εp

log
m
δ
.

From this we have

P

(

z≥ zmin+
2
εp

log
m
δ

)

≤ δ,

and the result follows.

7. Experiments

In this section we give experimental results for training linear classifiers withAlgorithms 1 and 2
on two real data sets. Imposing privacy requirements necessarily degrades classifier performance.
Our experiments show that provided there is sufficient data, objective perturbation (Algorithm 2)
typically outperforms the sensitivity method (1) significantly, and achieves error rate close to that
of the analogous non-private ERM algorithm. We first demonstrate how the accuracy of the classi-
fication algorithms vary withεp, the privacy requirement. We then show how the performance of
privacy-preserving classification varies with increasing training data size.

The first data set we consider is theAdult data set from the UCI Machine Learning Repository
(Asuncion and Newman, 2007). This moderately-sized data set contains demographic information
about approximately 47,000 individuals, and the classification task is to predict whether the annual
income of an individual is below or above $50,000, based on variables such as age, sex, occupation,
and education. For our experiments, the average fraction of positive labels is about 0.25; therefore,
a trivial classifier that always predicts−1 will achieve this error-rate, and only error-rates below
0.25 are interesting.

The second data set we consider is theKDDCup99 data set (Hettich and Bay, 1999); the task
here is to predict whether a network connection is a denial-of-service attack or not, based on several
attributes. The data set includes about 5,000,000 instances. For this data the average fraction of
positive labels is 0.20.

In order to implement the convex minimization procedure, we use the convex optimization
library provided by Okazaki (2009).
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7.1 Preprocessing

In order to process theAdult data set into a form amenable for classification, we removed all entries
with missing values, and converted each categorial attribute to a binary vector. For example, an at-
tribute such as(Male,Female) was converted into 2 binary features. Each column was normalized
to ensure that the maximum value is 1, and then each row is normalized to ensurethat the norm of
any example is at most 1. After preprocessing, each example was represented by a 105-dimensional
vector, of norm at most 1.

For theKDDCup99 data set, the instances were preprocessed by converting each categorial at-
tribute to a binary vector. Each column was normalized to ensure that the maximumvalue is 1,
and finally, each row was normalized, to ensure that the norm of any example is at most 1. After
preprocessing, each example was represented by a 119-dimensional vector, of norm at most 1.

7.2 Privacy-Accuracy Tradeoff

For our first set of experiments, we study the tradeoff between the privacy requirement on the
classifier, and its classification accuracy, when the classifier is trained ondata of a fixed size. The
privacy requirement is quantified by the value ofεp; increasingεp implies a higher change in the
belief of the adversary when one entry inD changes, and thus lower privacy. To measure accuracy,
we use classification (test) error; namely, the fraction of times the classifier predicts a label with the
wrong sign.
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Figure 2: Privacy-Accuracy trade-off for theAdult data set

To study the privacy-accuracy tradeoff, we compare objective perturbation with the sensitivity
method for logistic regression and Huber SVM. For Huber SVM, we pickedthe Huber constant
h= 0.5, a typical value (Chapelle, 2007).1 For each data set we trained classifiers for a few fixed
values ofΛ and tested the error of these classifiers. For each algorithm we chose thevalue ofΛ
that minimizes the error-rate forεp = 0.1.2 We then plotted the error-rate againstεp for the chosen
value ofΛ. The results are shown in Figures 2 and 3 for both logistic regression andsupport vector

1. Chapelle (2007) recommends usingh between 0.01 and 0.5; we useh= 0.5 as we found that a higher value typically
leads to more numerical stability, as well as better performance for both privacy-preserving methods.

2. ForKDDCup99 the error of the non-private algorithms did not increase with decreasingΛ.
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Figure 3: Privacy-Accuracy trade-off for theKDDCup99 data set

Λ 10−10.0 10−7.0 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0 10−1.5

Logistic
Non-Private 0.1540 0.1533 0.1654 0.1694 0.1758 0.1895 0.2322 0.2478

Output 0.5318 0.5318 0.5175 0.4928 0.4310 0.31630.2395 0.2456
Objective 0.8248 0.8248 0.8248 0.2694 0.23690.2161 0.2305 0.2475

Huber
Non-Private 0.1527 0.1521 0.1632 0.1669 0.1719 0.1793 0.2454 0.2478

Output 0.5318 0.5318 0.5211 0.5011 0.4464 0.33520.2376 0.2476
Objective 0.2585 0.2585 0.2585 0.2582 0.25590.2046 0.2319 0.2478

Table 1: Error for different regularization parameters onAdult for εp = 0.1. The best error per
algorithm is in bold.

machines.3 The optimal values ofΛ are shown in Tables 1 and 2. For non-private logistic regression
and SVM, each presented error-rate is an average over 10-fold cross-validation; for the sensitivity
method as well as objective perturbation, the presented error-rate is an average over 10-fold cross-
validation and 50 runs of the randomized training procedure. ForAdult, the privacy-accuracy
tradeoff is computed over the entire data set, which consists of 45,220 examples; forKDDCup99 we
use a randomly chosen subset of 70,000 examples.

For theAdult data set, the constant classifier that classifies all examples to be negative acheives
a classification error of about 0.25. The sensitivity method thus does slightly better than this con-
stant classifier for most values ofεp for both logistic regression and support vector machines. Ob-
jective perturbation outperforms sensitivity, and objective perturbation for support vector machines
achieves lower classification error than objective perturbation for logisticregression. Non-private
logistic regression and support vector machines both have classification error about 0.15.

3. The slight kink in the SVM curve onAdult is due to a switch to the second phase of the algorithm.
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Λ 10−9.0 10−7.0 10−5.0 10−3.5 10−3.0 10−2.5 10−2.0 10−1.5

Logistic
Non-Private 0.0016 0.0016 0.0021 0.0038 0.0037 0.0037 0.0325 0.0594

Output 0.5245 0.5245 0.5093 0.3518 0.1114 0.03590.0304 0.0678
Objective 0.2084 0.2084 0.2084 0.0196 0.01180.0113 0.0285 0.0591

Huber
Non-Private 0.0013 0.0013 0.0013 0.0029 0.0051 0.0056 0.0061 0.0163

Output 0.5245 0.5245 0.5229 0.4611 0.3353 0.05900.0092 0.0179
Objective 0.0191 0.0191 0.0191 0.1827 0.0123 0.00660.0064 0.0157

Table 2: Error for different regularization parameters onKDDCup99 for εp = 0.1. The best error per
algorithm is in bold.

For theKDDCup99 data set, the constant classifier that classifies all examples as negative, has
error 0.19. Again, objective perturbation outperforms sensitivity for both logistic regression and
support vector machines; however, for SVM and high values ofεp (low privacy), the sensitivity
method performs almost as well as objective perturbation. In the low privacy regime, logistic re-
gression under objective perturbation is better than support vector machines. In contrast, in the high
privacy regime (lowεp), support vector machines with objective perturbation outperform logistic
regression. For this data set, non-private logistic regression and support vector machines both have
a classification error of about 0.001.

For SVMs on bothAdult andKDDCup99, for largeεp (0.25 onwards), the error of either of the
private methods can increase slightly with increasingεp. This seems counterintuitive, but appears
to be due the imbalance in fraction of the two labels. As the labels are imbalanced,the optimal
classifier is trained to perform better on the negative labels than the positives. Asεp increases, for
a fixed training data size, so does the perturbation from the optimal classifier, induced by either of
the private methods. Thus, as the perturbation increases, the number of false positives increases,
whereas the number of false negatives decreases (as we verified by measuring the average false
positive and false negative rates of the private classifiers). Therefore, the total error may increase
slightly with decreasing privacy.

7.3 Accuracy vs. Training Data Size Tradeoffs

Next we examine how classification accuracy varies as we increase the size of the training set. We
measure classification accuracy as the accuracy of the classifier produced by the tuning procedure
in Section 6. As theAdult data set is not sufficiently large to allow us to do privacy-preserving
tuning, for these experiments, we restrict our attention to theKDDCup99 data set.

Figures 4 and 5 present the learning curves for objective perturbation, non-private ERM and
the sensitivity method for logistic loss and Huber loss, respectively. Experiments are shown for
εp = 0.01 andεp = 0.05 for both loss functions. The training sets (for each of 5 values ofΛ) are
chosen to be of sizen = 60,000 ton = 120,000, and the validation and test sets each are of size
25,000. Each presented value is an average over 5 random permutations ofthe data, and 50 runs

1102



DIFFERENTIALLY PRIVATE ERM

of the randomized classification procedure. For objective perturbation we performed experiment in
the regime whenε′p > 0, so∆ = 0 in Algorithm 2.4

For non-private ERM, we present result for training sets fromn= 300,000 ton= 600,000. The
non-private algorithms are tuned by comparing 5 values ofΛ on the same training set, and the test
set is of size 25,000. Each reported value is an average over 5 random permutations of the data.

We see from the figures that for non-private logistic regression and support vector machines, the
error remains constant with increasing data size. For the private methods,the error usually decreases
as the data size increases. In all cases, objective perturbation outperforms the sensitivity method,
and support vector machines generally outperform logistic regression.

6 7 8 9 10 11 12

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

Training set size (ε
p
 = 0.05)

M
is

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 

Sensitivity LR
Objective LR
Non−Private LR

(a) εp = 0.05

6 7 8 9 10 11 12

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Training set size (ε
p
 = 0.01)

M
is

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 

Sensitivity LR
Objective LR
Non−Private LR

(b) εp = 0.01

Figure 4: Learning curves for logistic regression on theKDDCup99 data set
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Figure 5: Learning curves for SVM on theKDDCup99 data set

4. This was chosen for a fair comparison with non-private as well as theoutput perturbation method, both of which had
access to only 5 values ofΛ.
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8. Discussions and Conclusions

In this paper we study the problem of learning classifiers with regularized empirical risk minimiza-
tion in a privacy-preserving manner. We consider privacy in theεp-differential privacy model of
Dwork et al. (2006b) and provide two algorithms for privacy-preserving ERM. The first one is based
on the sensitivity method due to Dwork et al. (2006b), in which the output of the non-private algo-
rithm is perturbed by adding noise. We introduce a second algorithm basedon the new paradigm
of objective perturbation. We provide bounds on the sample requirement of these algorithms for
achieving generalization errorεg. We show how to apply these algorithms with kernels, and finally,
we provide experiments with both algorithms on two real data sets. Our work is,to our knowledge,
the first to propose computationally efficient classification algorithms satisfying differential privacy,
together with validation on standard data sets.

In general, for classification, the error rate increases as the privacyrequirements are made more
stringent. Our generalization guarantees formalize this “price of privacy.” Our experiments, as well
as theoretical results, indicate that objective perturbation usually outperforms the sensitivity meth-
ods at managing the tradeoff between privacy and learning performance. Both algorithms perform
better with more training data, and when abundant training data is available, theperformance of
both algorithms can be close to non-private classification.

The conditions on the loss function and regularizer required by output perturbation and objective
perturbation are somewhat different. As Theorem 6 shows, output perturbation requires strong
convexity in the regularizer and convexity as well as a bounded derivative condition in the loss
function. The last condition can be replaced by a Lipschitz condition instead. However, the other
two conditions appear to be required, unless we impose some further restrictions on the loss and
regularizer. Objective perturbation on the other hand, requires strongconvexity of the regularizer,
convexity, differentiability, and bounded double derivatives in the loss function. Sometimes, it is
possible to construct a differentiable approximation to the loss function, even if the loss function is
not itself differentiable, as shown in Section 3.4.2.

Our experimental as well as theoretical results indicate that in general, objective perturbation
provides more accurate solutions than output perturbation. Thus, if the loss function satisfies the
conditions of Theorem 9, we recommend using objective perturbation. In some situations, such
as for SVMs, it is possible that objective perturbation does not directly apply, but applies to an
approximation of the target loss function. In our experiments, the loss of statistical efficiency due to
such approximation has been small compared to the loss of efficiency due to privacy, and we suspect
that this is the case for many practical situations as well.

Finally, our work does not address the question of finding private solutions to regularized ERM
when the regularizer is not strongly convex. For example, neither the output perturbation, nor the
objective perturbation method work forL1-regularized ERM. However, inL1-regularized ERM, one
can find a data set in which a change in one training point can significantly change the solution. As
a result, it is possible that such problems are inherently difficult to solve privately.

An open question in this work is to extend objective perturbation methods to moregeneral
convex optimization problems. Currently, the objective perturbation method applies to strongly
convex regularization functions and differentiable losses. Convex optimization problems appear
in many contexts within and without machine learning: density estimation, resource allocation for
communication systems and networking, social welfare optimization in economics,and elsewhere.
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In some cases these algorithms will also operate on sensitive or private data. Extending the ideas
and analysis here to those settings would provide a rigorous foundation for privacy analysis.

A second open question is to find a better solution for privacy-preserving classification with
kernels. Our current method is based on a reduction to the linear case, using the algorithm of Rahimi
and Recht (2008b); however, this method can be statistically inefficient, and require a lot of training
data, particularly when coupled with our privacy mechanism. The reason is that the algorithm of
Rahimi and Recht (2008b) requires the dimensionD of the projected space to be very high for good
performance. However, most differentially-private algorithms performworse as the dimensionality
of the data grows. Is there a better linearization method, which is possibly data-dependent, that will
provide a more statistically efficient solution to privacy-preserving learning with kernels?

A final question is to provide better upper and lower bounds on the sample requirement of
privacy-preserving linear classification. The main open question here isto provide a computation-
ally efficient algorithm for linear classification which has better statistical efficiency.

Privacy-preserving machine learning is the endeavor of designing private analogues of widely
used machine learning algorithms. We believe the present study is a starting point for further study
of the differential privacy model in this relatively new subfield of machine learning. The work of
Dwork et al. (2006b) set up a framework for assessing the privacy risks associated with publishing
the results of data analyses. Demanding high privacy requires sacrificing utility, which in the context
of classification and prediction is excess loss or regret. In this paper we demonstrate the privacy-
utility tradeoff for ERM, which is but one corner of the machine learning world. Applying these
privacy concepts to other machine learning problems will lead to new and interesting tradeoffs and
towards a set of tools for practical privacy-preserving learning andinference. We hope that our work
provides a benchmark of the current price of privacy, and inspires improvements in future work.
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